A062390 Numbers k such that (k + R(k)) / (k - R(k)) = +-11 where R(k) is the digit reversal of k (A004086).
45, 54, 495, 594, 4545, 4995, 5454, 5994, 45045, 49995, 54054, 59994, 450045, 454545, 495495, 499995, 540054, 545454, 594594, 599994, 4500045, 4549545, 4950495, 4999995, 5400054, 5459454, 5940594, 5999994, 45000045, 45045045
Offset: 1
Examples
(5994 + 4995) /(5994 - 4995) = 10989/999 = 11, so 5994 is in the sequence.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..44
Programs
-
Mathematica
dr11Q[n_]:=Module[{dr=FromDigits[Reverse[IntegerDigits[n]]]},n!=dr && Abs[(n+dr)/(n-dr)]==11]; Select[Range[45100000],dr11Q] (* Harvey P. Dale, Oct 03 2011 *)
-
PARI
{ n=0; for (m=1, 10^9, x=m; r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); if ((m + r) == 11*abs(m - r), write("b062390.txt", n++, " ", m); if (n==44, break)) ) } \\ Harry J. Smith, Aug 07 2009
Extensions
Corrected formula and more terms from Jason Earls, Jun 29 2001
Definition corrected and incorrect formula deleted by Harry J. Smith, Aug 06 2009
Missing terms adding like a(5) = 4545 by Harry J. Smith, Aug 07 2009
Comments