A347000 The (m^n)-th prime, written as square array T(n,m) read by falling antidiagonals.
2, 3, 2, 5, 7, 2, 7, 23, 19, 2, 11, 53, 103, 53, 2, 13, 97, 311, 419, 131, 2, 17, 151, 691, 1619, 1543, 311, 2, 19, 227, 1321, 4637, 8161, 5519, 719, 2, 23, 311, 2309, 10627, 28687, 38873, 19289, 1619, 2, 29, 419, 3671, 21391, 79349, 171529, 180503, 65687, 3671, 2
Offset: 1
Examples
The array begins 2 3 5 7 11 13 17 ... 2 7 23 53 97 151 227 ... 2 19 103 311 691 1321 2309 ... 2 53 419 1619 4637 10627 21391 ... 2 131 1543 8161 28687 79349 185707 ... 2 311 5519 38873 171529 567871 1549817 ... 2 719 19289 180503 994837 3950183 12579617 ...
Links
- Hugo Pfoertner, Table of k, a(k) for k = 1..351, antidiagonals for m+n<=26, flattened.
Crossrefs
Programs
-
Mathematica
T[n_,m_]:=Prime[m^n];Flatten[Table[Reverse[Table[T[n-m+1,m],{m,n}]],{n,10}]] (* Stefano Spezia, Aug 10 2021 *)