cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062459 Primes of form n^2 + mu(n), where mu is A008683.

Original entry on oeis.org

2, 3, 37, 101, 197, 677, 5477, 8837, 17957, 21317, 42437, 44101, 98597, 106277, 148997, 217157, 324901, 401957, 454277, 476101, 509797, 828101, 864901, 933157, 1196837, 1378277, 1664101, 1674437, 1705637, 1833317, 1865957, 1988101
Offset: 1

Views

Author

Jason Earls, Jul 26 2001

Keywords

Comments

All terms except for 3 are of the form n^2 + 1 where mu(n) = 1, since n^2 or n^2-1 can't be prime except for n=2. - Robert Israel, Oct 09 2015

Crossrefs

Programs

  • Maple
    R:= select(t -> numtheory:-mobius(t)=1, [$3..10000]):
    2,3,op(select(isprime, map(t-> t^2+1, R))); # Robert Israel, Oct 09 2015
  • Mathematica
    Select[Table[m^2+MoebiusMu[m],{m,0,1500}],PrimeQ]  (* Harvey P. Dale, Feb 08 2011 *)
  • PARI
    j=[]; for(n=1,3000,x=n^2+moebius(n); if(isprime(x),j=concat(j,x))); j
    
  • PARI
    n=0; for (m=1, 10^5, x=m^2 + moebius(m); if (isprime(x), write("b062459.txt", n++, " ", x); if (n==1000, break))) \\ Harry J. Smith, Aug 08 2009
    
  • PARI
    list(lim)=my(v=List([2]),t); forstep(n=2,sqrtint(lim\1),4, if(isprime(t=n^2+moebius(n)), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Sep 22 2015