A306616 Integers k such that phi(Catalan(k+1)) = 4*phi(Catalan(k)) where phi is A000010 and Catalan is A000108.
2, 8, 19, 20, 36, 42, 44, 55, 56, 76, 91, 109, 116, 120, 140, 143, 152, 156, 176, 184, 200, 204, 213, 216, 224, 235, 242, 260, 289, 296, 300, 380, 384, 400, 401, 415, 436, 464, 469, 476, 524, 547, 553, 564, 595, 602, 616, 624, 630, 631, 660, 685, 704, 716, 744, 776, 800
Offset: 1
Keywords
Examples
phi(C(2)) = phi(2) = 1 and phi(C(3)) = phi(5) = 4 so 2 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- Florian Luca and Pantelimon Stanica, On the Euler function of the Catalan numbers, Journal of Number Theory, Vol. 132, No. 7 (2012), pp. 1404-1424.
Programs
-
Mathematica
Select[Range[1000], EulerPhi[CatalanNumber[#+1]]== 4*EulerPhi[CatalanNumber[#]] &] (* G. C. Greubel, Mar 02 2019 *)
-
PARI
C(n) = binomial(2*n,n)/(n+1); isok(n) = eulerphi(C(n+1)) == 4*eulerphi(C(n));
-
Sage
[n for n in (1..1000) if euler_phi(catalan_number(n+1)) == 4*euler_phi(catalan_number(n))] # G. C. Greubel, Mar 02 2019
Comments