A062677 Numbers with property that every divisor (except 1) contains the digit 8.
83, 89, 181, 281, 283, 383, 389, 487, 587, 683, 787, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 983, 1087, 1181, 1187, 1283, 1289, 1381, 1481, 1483, 1487, 1489, 1583, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861
Offset: 1
Examples
7387 has divisors 83, 89 and 7387, all of which contain the digit 8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
isA062677 := proc(n) if n = 1 then return false; end if; for d in numtheory[divisors](n) minus {1} do convert(convert(d,base,10),set) ; if not 8 in % then return false; end if; end do: true ; end proc: for n from 1 to 2000 do if isA062677(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Mar 27 2017
-
Mathematica
fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 1900], fQ[#, 8] &] (* Robert G. Wilson v, Jun 11 2014 *)
Comments