A100013 Number of prime factors in n!+7 (counted with multiplicity).
3, 3, 2, 1, 1, 1, 1, 3, 3, 3, 3, 2, 3, 3, 4, 2, 2, 3, 3, 5, 5, 5, 3, 4, 3, 2, 4, 5, 5, 4, 7, 6, 4, 4, 7, 2, 5, 4, 7, 4, 5, 3, 4, 6, 5, 4, 3, 3, 5, 6, 3, 5, 6, 3, 3, 7, 4, 5, 5, 2, 4, 4, 5, 4, 2, 4, 3, 5, 2, 5, 7, 4, 7, 5, 5, 3, 5, 4, 6, 6, 8, 5
Offset: 0
Examples
Example 1!+7 = 2^3 so a(1) = 3. a(3) = a(4) = a(5) = a(6) = 1 because 3!+1 = 13, 4!+7 = 31, 5!+1 = 127, 6!+7 = 727 and these are all primes. a(11) = a(15) = a(16) = a(25) = a(35) = a(59) = 2 because 11!+7 = 39916807 = 7 * 5702401, 15!+7 = 1307674368007 = 7 * 186810624001, 16!+7 = 20922789888007 = 7 * 2988969984001, 25!+7 = 15511210043330985984000007 = 7 * 2215887149047283712000001, 35!+7 = 10333147966386144929666651337523200000007 = 7 * 1476163995198020704238093048217600000001 and 59!+7 = 138683118545689835737939019720389406345902876772687432540821294940160000000000007 = 7 * 19811874077955690819705574245769915192271839538955347505831613562880000000000001 are all semiprimes.
References
- C. Caldwell and H. Dubner, "Primorial, factorial and multifactorial primes," Math. Spectrum, 26:1 (1993/4) 1-7.
Links
- Chris Caldwell, multifactorial prime (another Prime Pages' Glossary entries).
- Ken Davis, Status of Search for Multifactorial Primes.
- Sean A. Irvine, Factorizations of n!+7
Extensions
More terms from Sean A. Irvine, Sep 20 2012