A062749 Sixth column (r=5) of FS(3) staircase array A062745.
12, 43, 108, 228, 431, 753, 1239, 1944, 2934, 4287, 6094, 8460, 11505, 15365, 20193, 26160, 33456, 42291, 52896, 65524, 80451, 97977, 118427, 142152, 169530, 200967, 236898, 277788, 324133, 376461
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. D. Frey and J. A. Sellers, Generalizing Bailey's generalization of the Catalan numbers, The Fibonacci Quarterly, 39 (2001) 142-148.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Maple
seq(coeff(series((3*x^4-15*x^3+30*x^2-29*x+12)/(1-x)^6,x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 30 2018
-
PARI
Vec((12 - 29*x + 30*x^2 - 15*x^3 + 3*x^4) / (1 - x)^6 + O(x^40)) \\ Colin Barker, Oct 30 2018
Formula
a(n) = A062745(n+3, 5)= -3+binomial(n+4, 3)*(n^2+16*n+75)/20 = (n+1)*(n^4+24*n^3+221*n^2+894*n+1440)/5!.
G.f.: N(3;2, x)/(1-x)^6 with N(3;2, x)= 12-29*x+30*x^2-15*x^3+3*x^4, polynomial of the third row of A062746.
From Colin Barker, Oct 30 2018: (Start)
G.f.: (12 - 29*x + 30*x^2 - 15*x^3 + 3*x^4) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
Comments