cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A059404 Numbers with different exponents in their prime factorizations.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200
Offset: 1

Views

Author

Labos Elemer, Jul 18 2001

Keywords

Comments

Former name: Numbers k such that k/(largest power of squarefree kernel of k) is larger than 1.
Also numbers k = p(1)^alpha(1)* ... * p(r)^alpha(r) such that RootMeanSquare(alpha(1), ..., alpha(r)) is not an integer. - Ctibor O. Zizka, Sep 19 2008

Examples

			440 is in the sequence because 440 = 2^3*5*11 and it has two distinct exponents, 3 and 1.
		

Crossrefs

Complement of A072774 (powers of squarefree numbers).

Programs

  • Maple
    isA := n -> 1 < nops({seq(padic:-ordp(n, p), p in NumberTheory:-PrimeFactors(n))}): select(isA, [seq(1..190)]);  # Peter Luschny, Apr 14 2025
  • Mathematica
    A059404Q[n_] := Length[Union[FactorInteger[n][[All, 2]]]] > 1;
    Select[Range[200], A059404Q] (* Paolo Xausa, Jan 07 2025 *)
  • PARI
    is(n)=#Set(factor(n)[,2])>1 \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from sympy import factorint
    def ok(n): return len(set(factorint(n).values())) > 1
    print([k for k in range(190) if ok(k)]) # Michael S. Branicky, Sep 01 2022
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A059404(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        def f(x): return n+1-(y:=x.bit_length())+sum(g(integer_nthroot(x,k)[0]) for k in range(1,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024
    
  • SageMath
    def isA(n): return 1 < len(set(valuation(n, p) for p in prime_divisors(n)))
    print([n for n in range(1, 190) if isA(n)])  # Peter Luschny, Apr 14 2025

Formula

A062760(a(n)) > 1, i.e., a(n)/(A007947(a(n))^A051904(a(n))) = a(n)/A062759(a(n)) > 1.
A071625(a(n)) > 1. - Michael S. Branicky, Sep 01 2022
Sum_{n>=1} 1/a(n)^s = zeta(s) - 1 - Sum_{k>=1} (zeta(k*s)/zeta(2*k*s)-1) for s > 1. - Amiram Eldar, Mar 20 2025

A062770 n/[largest power of squarefree kernel] equals 1; perfect powers of sqf-kernels (or sqf-numbers).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 100
Offset: 1

Views

Author

Labos Elemer, Jul 18 2001

Keywords

Comments

The sequence contains numbers m such that the exponents e are identical for all prime power factors p^e | m. It is clear from this alternate definition that m / K^E = 1 iff E is an integer. - Michael De Vlieger, Jun 24 2022

Examples

			Primes, squarefree numbers and perfect powers are here.
From _Michael De Vlieger_, Jun 24 2022 (Start):
144 cannot be in the sequence, since the exponents of its prime power factors differ. The squarefree kernel of 144 = 2^4 * 3^2 is 2*3 = 6. The largest power of 6 less than 144 is 36. 144/36 = 4, so it is not in the sequence.
216 is in the sequence because 216 = 2^3 * 3^3 is 2*3 = 6. But 216 = 6^3, hence 6^3 / 6^3 = 1. (End)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 2^16], Length@ Union@ FactorInteger[#][[All, -1]] == 1 &] (* Michael De Vlieger, Jun 24 2022 *)
  • PARI
    is(n)=ispower(n,,&n); issquarefree(n) && n>1 \\ Charles R Greathouse IV, Sep 18 2015
    
  • PARI
    is(n)=#Set(factor(n)[,2])==1 \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A062770(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        def f(x): return n-2+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(1,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

A062760(a(n)) = 1, i.e., a(n)/(A007947(a(n))^A051904(a(n))) = a(n)/A062759(a(n)) = 1.
a(n) = A072774(n+1). - Chai Wah Wu, Aug 19 2024

Extensions

Offset corrected by Charles R Greathouse IV, Sep 18 2015

A062760 a(n) is n divided by the largest power of the squarefree kernel of n (A007947) which divides it.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 1, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7, 3, 1, 1, 1, 1, 4
Offset: 1

Views

Author

Labos Elemer, Jul 16 2001

Keywords

Comments

a(n) divides A003557 but is not equal to it.
a(n) is least d such that the prime power exponents of n/d are all equal; see also A066636. - David James Sycamore, Jun 13 2024

Examples

			n=1800: the squarefree kernel is 2*3*5 = 30 and 900 = 30^2 divides n, a(1800) = 2, the quotient of 1800/900.
		

Crossrefs

Cf. A059404 (n such that a(n)>1), A072774 (n such that a(n)=1).
Cf. A066636.

Programs

  • Maple
    f:= proc(n) local F,m,t;
      F:= ifactors(n)[2];
      m:= min(seq(t[2],t=F));
      mul(t[1]^(t[2]-m),t=F)
    end proc:
    map(f, [$1..200]); # Robert Israel, Nov 03 2017
  • Mathematica
    {1}~Join~Table[n/#^IntegerExponent[n, #] &@ Last@ Select[Divisors@ n, SquareFreeQ], {n, 2, 104}] (* Michael De Vlieger, Nov 02 2017 *)
    a[n_] := Module[{f = FactorInteger[n], e}, e = Min[f[[;; , 2]]]; f[[;; , 2]] -= e; Times @@ Power @@@ f]; Array[a, 100] (* Amiram Eldar, Feb 12 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014
    A051904(n) = if(1==n,0,vecmin(factor(n)[, 2])); \\ After Charles R Greathouse IV's code
    A062760(n) = n/(A007947(n)^A051904(n)); \\ Antti Karttunen, Sep 23 2017

Formula

a(n) = n/(A007947(n)^A051904(n)).
a(n) = n/A062759(n). - Amiram Eldar, Feb 12 2023

A304776 A weakening function. a(n) = n / A007947(n)^(A051904(n) - 1) where A007947 is squarefree kernel and A051904 is minimum prime exponent.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 2, 65, 66, 67, 68, 69, 70, 71, 12, 73, 74, 75, 76, 77, 78, 79, 80, 3, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

This function takes powerful numbers (A001694) to weak numbers (A052485) and leaves weak numbers unchanged.
First differs from A052410 at a(72) = 12, A052410(72) = 72.

Crossrefs

Programs

  • Mathematica
    spr[n_]:=Module[{f,m},f=FactorInteger[n];m=Min[Last/@f];n/Times@@First/@f^(m-1)];
    Array[spr,100]
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A051904(n) = if((1==n),0,vecmin(factor(n)[, 2]));
    A304776(n) = (n/(A007947(n)^(A051904(n)-1))); \\ Antti Karttunen, May 19 2022
    
  • PARI
    a(n) = if(n == 1, 1, my(f = factor(n), p = f[, 1], e = f[, 2]); n / vecprod(p)^(vecmin(e) - 1)); \\ Amiram Eldar, Sep 12 2024

Formula

a(n) = n / A354090(n). - Antti Karttunen, May 19 2022
Sum_{k=1..n} a(k) ~ n^2 / 2. - Amiram Eldar, Sep 12 2024

Extensions

Data section extended up to a(83) by Antti Karttunen, May 19 2022

A304768 Augmented integer conjugate of n. a(n) = (1/n) * A007947(n)^(1 + A051903(n)) where A007947 is squarefree kernel and A051903 is maximum prime exponent.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 18, 13, 14, 15, 2, 17, 12, 19, 50, 21, 22, 23, 54, 5, 26, 3, 98, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 250, 41, 42, 43, 242, 75, 46, 47, 162, 7, 20, 51, 338, 53, 24, 55, 686, 57, 58, 59, 450, 61, 62, 147, 2, 65, 66, 67
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

Image is the weak numbers A052485, on which n -> a(n) is an involution whose fixed points are the squarefree numbers A005117.

Crossrefs

Programs

  • Mathematica
    acj[n_]:=Module[{f,m},f=FactorInteger[n];m=Max[Last/@f];Times@@Table[p[[1]]^(m-p[[2]]+1),{p,f}]];
    Array[acj,100]
  • PARI
    a(n) = {if(n==1, 1, my(f = factor(n), e = vecmax(f[,2]) + 1); prod(i = 1, #f~, f[i,1]^e) / n);} \\ Amiram Eldar, Feb 12 2023

Formula

If n = Product_{i = 1..k} prime(x_i)^y_i, then a(n) = Product_{i = 1..k} prime(x_i)^(max{y_1,...,y_k} - y_i + 1).
Showing 1-5 of 5 results.