cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A373703 a(n) = A062760(n)*A066636(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 10, 1, 1, 1, 36, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 1, 1, 1, 22, 15, 1, 1, 216, 1, 10, 1, 26, 1, 36, 1, 196, 1, 1, 1, 30, 1, 1, 21, 1, 1, 1, 1, 34, 1, 1, 1, 6, 1, 1, 15, 38, 1, 1, 1, 1000
Offset: 1

Views

Author

David James Sycamore, Jun 13 2024

Keywords

Comments

If n has unequal prime exponents (a term in A059404), then a(n) > 1; otherwise a(n) = 1.

Examples

			a(12) = A062760(12)*A066636(12) = 2*3 = 6.
a(45) = A062760(45)*A066636(45) = 3*5 = 15.
		

Crossrefs

Programs

  • Mathematica
    Table[Function[{r, s}, r^(Max[s] - Min[s])] @@ {Times @@ #[[All, 1]], #[[All, -1]]} &@ FactorInteger[n], {n, 120}] (* Michael De Vlieger, Jun 13 2024 *)
  • PARI
    a(n) = if (n==1, 1, my(f=factor(n)); (factorback(f[, 1]))^(vecmax(f[,2])-vecmin(f[,2]))); \\ Michel Marcus, Jun 14 2024

Formula

For n > 1, a(n) = A007947(n)^k where k is the difference between the greatest and least exponents in the prime power factorization of n.

A059404 Numbers with different exponents in their prime factorizations.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200
Offset: 1

Views

Author

Labos Elemer, Jul 18 2001

Keywords

Comments

Former name: Numbers k such that k/(largest power of squarefree kernel of k) is larger than 1.
Also numbers k = p(1)^alpha(1)* ... * p(r)^alpha(r) such that RootMeanSquare(alpha(1), ..., alpha(r)) is not an integer. - Ctibor O. Zizka, Sep 19 2008

Examples

			440 is in the sequence because 440 = 2^3*5*11 and it has two distinct exponents, 3 and 1.
		

Crossrefs

Complement of A072774 (powers of squarefree numbers).

Programs

  • Maple
    isA := n -> 1 < nops({seq(padic:-ordp(n, p), p in NumberTheory:-PrimeFactors(n))}): select(isA, [seq(1..190)]);  # Peter Luschny, Apr 14 2025
  • Mathematica
    A059404Q[n_] := Length[Union[FactorInteger[n][[All, 2]]]] > 1;
    Select[Range[200], A059404Q] (* Paolo Xausa, Jan 07 2025 *)
  • PARI
    is(n)=#Set(factor(n)[,2])>1 \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from sympy import factorint
    def ok(n): return len(set(factorint(n).values())) > 1
    print([k for k in range(190) if ok(k)]) # Michael S. Branicky, Sep 01 2022
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A059404(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        def f(x): return n+1-(y:=x.bit_length())+sum(g(integer_nthroot(x,k)[0]) for k in range(1,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024
    
  • SageMath
    def isA(n): return 1 < len(set(valuation(n, p) for p in prime_divisors(n)))
    print([n for n in range(1, 190) if isA(n)])  # Peter Luschny, Apr 14 2025

Formula

A062760(a(n)) > 1, i.e., a(n)/(A007947(a(n))^A051904(a(n))) = a(n)/A062759(a(n)) > 1.
A071625(a(n)) > 1. - Michael S. Branicky, Sep 01 2022
Sum_{n>=1} 1/a(n)^s = zeta(s) - 1 - Sum_{k>=1} (zeta(k*s)/zeta(2*k*s)-1) for s > 1. - Amiram Eldar, Mar 20 2025

A062770 n/[largest power of squarefree kernel] equals 1; perfect powers of sqf-kernels (or sqf-numbers).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 100
Offset: 1

Views

Author

Labos Elemer, Jul 18 2001

Keywords

Comments

The sequence contains numbers m such that the exponents e are identical for all prime power factors p^e | m. It is clear from this alternate definition that m / K^E = 1 iff E is an integer. - Michael De Vlieger, Jun 24 2022

Examples

			Primes, squarefree numbers and perfect powers are here.
From _Michael De Vlieger_, Jun 24 2022 (Start):
144 cannot be in the sequence, since the exponents of its prime power factors differ. The squarefree kernel of 144 = 2^4 * 3^2 is 2*3 = 6. The largest power of 6 less than 144 is 36. 144/36 = 4, so it is not in the sequence.
216 is in the sequence because 216 = 2^3 * 3^3 is 2*3 = 6. But 216 = 6^3, hence 6^3 / 6^3 = 1. (End)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 2^16], Length@ Union@ FactorInteger[#][[All, -1]] == 1 &] (* Michael De Vlieger, Jun 24 2022 *)
  • PARI
    is(n)=ispower(n,,&n); issquarefree(n) && n>1 \\ Charles R Greathouse IV, Sep 18 2015
    
  • PARI
    is(n)=#Set(factor(n)[,2])==1 \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A062770(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        def f(x): return n-2+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(1,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

A062760(a(n)) = 1, i.e., a(n)/(A007947(a(n))^A051904(a(n))) = a(n)/A062759(a(n)) = 1.
a(n) = A072774(n+1). - Chai Wah Wu, Aug 19 2024

Extensions

Offset corrected by Charles R Greathouse IV, Sep 18 2015

A066636 a(n) = A066638(n)/n, where A066638(n) is the smallest power of a squarefree kernel of n that is a multiple of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 11, 5, 1, 1, 27, 1, 2, 1, 13, 1, 4, 1, 49, 1, 1, 1, 15, 1, 1, 7, 1, 1, 1, 1, 17, 1, 1, 1, 3, 1, 1, 3, 19, 1, 1, 1, 125, 1, 1, 1, 21, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 09 2002

Keywords

Comments

a(n) is the least m such that the prime power exponents of m*n are all equal; see also A062760. - David James Sycamore, Jun 13 2024

Examples

			12 = 2^2*3^1 so m = 3 (3*12 = 36 = 2^2*3^2).
		

Crossrefs

Programs

Formula

a(n) = (A007947(n)^A051903(n))/n. - Antti Karttunen, Nov 20 2017

A323163 Greatest common divisor of product (1+(p^e)) and product p^(e-1), where p ranges over prime factors of n, with e corresponding exponent; a(n) = gcd(A034448(n), A003557(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 3, 10, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2019

Keywords

Crossrefs

Differs from A062760 for the first time at n=36, where a(36) = 2, while A062760(36) = 1.

Programs

  • PARI
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A323163(n) = gcd(A003557(n), A034448(n));

Formula

a(n) = gcd(A003557(n), A034448(n)).

A295417 Self-inverse permutation of natural numbers: in prime factorization of n replace each positive prime exponent e with max + min - e, where max = A051903(n) and min = A051904(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 13, 14, 15, 16, 17, 12, 19, 50, 21, 22, 23, 54, 25, 26, 27, 98, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 250, 41, 42, 43, 242, 75, 46, 47, 162, 49, 20, 51, 338, 53, 24, 55, 686, 57, 58, 59, 450, 61, 62, 147, 64, 65, 66
Offset: 1

Views

Author

Rémy Sigrist, Nov 22 2017

Keywords

Comments

This sequence was inspired by A293448.
This sequence first differs from A293448 at n = 42: a(42) = 42 whereas A293448(42) = 70.
a(A293448(n)) = A293448(a(n)) for any n > 0.
a(n) = n iff n belongs to A072774.
f(n) = f(a(n)) for any n > 0 and f in { A001221, A006530, A007947, A020639, A051903, A051904 }.
The lines visible in the logarithmic scatterplot of the sequence seems to correspond to integer sets where the function A062760 is constant (see logarithmic scatterplot in Links section).

Examples

			For n = 1620:
- 1620 = 2^2 * 3^4 * 5,
- A051903(1620) = 4 and A051904(1620) = 1,
- a(1620) = 2^(4+1-2) * 3^(4+1-4) * 5^(4+1-1) = 2^3 * 3 * 5^4 = 15000.
		

Crossrefs

Programs

  • PARI
    a(n) = { my(f=factor(n)); if(#f~<=1, return(n), my(mi=vecmin(f[,2]), ma=vecmax(f[,2])); return(prod(i=1, #f~, f[i,1]^(ma+mi-f[i,2])))) }

Formula

a(n) = A007947(n)^(A051903(n) + A051904(n)) / n.
Showing 1-6 of 6 results.