cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A373703 a(n) = A062760(n)*A066636(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 10, 1, 1, 1, 36, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 1, 1, 1, 22, 15, 1, 1, 216, 1, 10, 1, 26, 1, 36, 1, 196, 1, 1, 1, 30, 1, 1, 21, 1, 1, 1, 1, 34, 1, 1, 1, 6, 1, 1, 15, 38, 1, 1, 1, 1000
Offset: 1

Views

Author

David James Sycamore, Jun 13 2024

Keywords

Comments

If n has unequal prime exponents (a term in A059404), then a(n) > 1; otherwise a(n) = 1.

Examples

			a(12) = A062760(12)*A066636(12) = 2*3 = 6.
a(45) = A062760(45)*A066636(45) = 3*5 = 15.
		

Crossrefs

Programs

  • Mathematica
    Table[Function[{r, s}, r^(Max[s] - Min[s])] @@ {Times @@ #[[All, 1]], #[[All, -1]]} &@ FactorInteger[n], {n, 120}] (* Michael De Vlieger, Jun 13 2024 *)
  • PARI
    a(n) = if (n==1, 1, my(f=factor(n)); (factorback(f[, 1]))^(vecmax(f[,2])-vecmin(f[,2]))); \\ Michel Marcus, Jun 14 2024

Formula

For n > 1, a(n) = A007947(n)^k where k is the difference between the greatest and least exponents in the prime power factorization of n.

A066638 Smallest power of a squarefree number that is a multiple of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 13, 14, 15, 16, 17, 36, 19, 100, 21, 22, 23, 216, 25, 26, 27, 196, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 1000, 41, 42, 43, 484, 225, 46, 47, 1296, 49, 100, 51, 676, 53, 216, 55, 2744, 57, 58, 59
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 09 2002

Keywords

Examples

			a(40)=10^3 > 40 > 10=rad(40).
		

Crossrefs

Programs

  • Haskell
    a066638 n = a007947 n ^ a051903 n  -- Reinhard Zumkeller, Jun 17 2015
  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; mpe[n_] := Max @@ Last /@ FactorInteger[n]; mpe[1] = 0; a[n_] := rad[n]^mpe[n]; Table[a[n], {n, 1, 59}] (* Jean-François Alcover, Mar 27 2013 *)
  • PARI
    a(n)=if(n==1,return(1)); my(f=factor(n));prod(i=1,#f~,f[i,1])^ vecmax(f[,2]) \\ Charles R Greathouse IV, Aug 21 2013
    

Formula

a(n) = rad(n)^mpe(n), (rad=A007947, mpe=A051903).
a(n) = A066636(n) * n. - Amiram Eldar, Sep 15 2023

A062760 a(n) is n divided by the largest power of the squarefree kernel of n (A007947) which divides it.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 1, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7, 3, 1, 1, 1, 1, 4
Offset: 1

Views

Author

Labos Elemer, Jul 16 2001

Keywords

Comments

a(n) divides A003557 but is not equal to it.
a(n) is least d such that the prime power exponents of n/d are all equal; see also A066636. - David James Sycamore, Jun 13 2024

Examples

			n=1800: the squarefree kernel is 2*3*5 = 30 and 900 = 30^2 divides n, a(1800) = 2, the quotient of 1800/900.
		

Crossrefs

Cf. A059404 (n such that a(n)>1), A072774 (n such that a(n)=1).
Cf. A066636.

Programs

  • Maple
    f:= proc(n) local F,m,t;
      F:= ifactors(n)[2];
      m:= min(seq(t[2],t=F));
      mul(t[1]^(t[2]-m),t=F)
    end proc:
    map(f, [$1..200]); # Robert Israel, Nov 03 2017
  • Mathematica
    {1}~Join~Table[n/#^IntegerExponent[n, #] &@ Last@ Select[Divisors@ n, SquareFreeQ], {n, 2, 104}] (* Michael De Vlieger, Nov 02 2017 *)
    a[n_] := Module[{f = FactorInteger[n], e}, e = Min[f[[;; , 2]]]; f[[;; , 2]] -= e; Times @@ Power @@@ f]; Array[a, 100] (* Amiram Eldar, Feb 12 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014
    A051904(n) = if(1==n,0,vecmin(factor(n)[, 2])); \\ After Charles R Greathouse IV's code
    A062760(n) = n/(A007947(n)^A051904(n)); \\ Antti Karttunen, Sep 23 2017

Formula

a(n) = n/(A007947(n)^A051904(n)).
a(n) = n/A062759(n). - Amiram Eldar, Feb 12 2023

A304328 a(n) = n/(largest perfect power divisor of n).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 3, 1, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 1, 37, 38, 39, 5, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 2
Offset: 1

Views

Author

Gus Wiseman, May 10 2018

Keywords

Comments

Not all terms are squarefree numbers; for example, a(500) = 4.

Crossrefs

Programs

  • Mathematica
    Table[n/Last[Select[Divisors[n],#===1||GCD@@FactorInteger[#][[All,2]]>1&]],{n,100}]
  • PARI
    a(n)={my(m=1); fordiv(n, d, if(ispower(d), m=max(m,d))); n/m} \\ Andrew Howroyd, Aug 26 2018

Formula

a(n) * A203025(n) = n.

A304776 A weakening function. a(n) = n / A007947(n)^(A051904(n) - 1) where A007947 is squarefree kernel and A051904 is minimum prime exponent.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 2, 65, 66, 67, 68, 69, 70, 71, 12, 73, 74, 75, 76, 77, 78, 79, 80, 3, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

This function takes powerful numbers (A001694) to weak numbers (A052485) and leaves weak numbers unchanged.
First differs from A052410 at a(72) = 12, A052410(72) = 72.

Crossrefs

Programs

  • Mathematica
    spr[n_]:=Module[{f,m},f=FactorInteger[n];m=Min[Last/@f];n/Times@@First/@f^(m-1)];
    Array[spr,100]
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A051904(n) = if((1==n),0,vecmin(factor(n)[, 2]));
    A304776(n) = (n/(A007947(n)^(A051904(n)-1))); \\ Antti Karttunen, May 19 2022
    
  • PARI
    a(n) = if(n == 1, 1, my(f = factor(n), p = f[, 1], e = f[, 2]); n / vecprod(p)^(vecmin(e) - 1)); \\ Amiram Eldar, Sep 12 2024

Formula

a(n) = n / A354090(n). - Antti Karttunen, May 19 2022
Sum_{k=1..n} a(k) ~ n^2 / 2. - Amiram Eldar, Sep 12 2024

Extensions

Data section extended up to a(83) by Antti Karttunen, May 19 2022
Showing 1-5 of 5 results.