cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A066636 a(n) = A066638(n)/n, where A066638(n) is the smallest power of a squarefree kernel of n that is a multiple of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 11, 5, 1, 1, 27, 1, 2, 1, 13, 1, 4, 1, 49, 1, 1, 1, 15, 1, 1, 7, 1, 1, 1, 1, 17, 1, 1, 1, 3, 1, 1, 3, 19, 1, 1, 1, 125, 1, 1, 1, 21, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 09 2002

Keywords

Comments

a(n) is the least m such that the prime power exponents of m*n are all equal; see also A062760. - David James Sycamore, Jun 13 2024

Examples

			12 = 2^2*3^1 so m = 3 (3*12 = 36 = 2^2*3^2).
		

Crossrefs

Programs

Formula

a(n) = (A007947(n)^A051903(n))/n. - Antti Karttunen, Nov 20 2017

A356191 a(n) is the smallest exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 8, 27, 10, 11, 24, 13, 14, 15, 32, 17, 54, 19, 40, 21, 22, 23, 24, 125, 26, 27, 56, 29, 30, 31, 32, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 88, 135, 46, 47, 96, 343, 250, 51, 104, 53, 54, 55, 56, 57, 58, 59, 120, 61, 62, 189, 128, 65
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^e, p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2]%2, f[i,1]^f[i,2], f[i,1]^(f[i,2]+1)))};
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - p^2*X^2) * (1 + p*X + p^3*X^2 - p^2*X^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 09 2023

Formula

Multiplicative with a(p^e) = p^e if e is odd and p^(e+1) otherwise.
a(n) = n iff n is in A268335.
a(n) = A064549(n)/A007913(n).
a(n) = n*A336643(n).
a(n) = n^2/A350390(n).
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - p^(6-5*s) + p^(7-5*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(3-3*s) - p^(4-3*s) - 2*p^(2-2*s)).
Sum_{k=1..n} a(k) ~ Pi^2 * f(2) * n^2 / 24 * (log(n) + 3*gamma - 1/2 + 12*zeta'(2)/Pi^2 + f'(2)/f(2)), where
f(2) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...,
f'(2) = f(2) * Sum_{p prime} (11*p - 5) * log(p) / (p^3 + p^2 - 3*p + 1) = f(1) * 4.7165968208567630786609552448708126340725121316268495170070986645608062483...
and gamma is the Euler-Mascheroni constant A001620. (End)

A356192 a(n) is the smallest cubefull exponentially odd number (A335988) that is divisible by n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 32, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Comments

First differs from A053149 and A356193 at n=16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^Max[e, 3], p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2]%2, f[i,1]^max(f[i,2],3), f[i,1]^(f[i,2]+1)))};

Formula

Multiplicative with a(p^e) = p^max(e,3) if e is odd and p^(e+1) otherwise.
a(n) = n iff n is in A335988.
a(n) = A356191(n) iff n is a powerful number (A001694).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (3*p^2-1)/(p^3*(p^2-1))) = 1.69824776889117043774... .
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(6)/4) * Product_{p prime} (1 - 1/p^2 + 1/p^5 - 2/p^6 + 1/p^8 + 1/p^9 - 1/p^10) = 0.1559368144... . - Amiram Eldar, Nov 13 2022

A356193 a(n) is the smallest cubefull number (A036966) that is a multiple of n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 16, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Comments

First differs from A053149 and A356192 at n=16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Max[e, 3]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i,1]^max(f[i,2],3))};

Formula

Multiplicative with a(p^e) = p^max(e,3).
a(n) = n iff n is in A036966.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (3*p-2)/(p^3*(p-1))) = 1.76434793373691907811... . - Amiram Eldar, Jul 29 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(3)/4) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 2/p^5 - 1/p^6 - 1/p^8 + 2/p^9 - 1/p^10) = 0.1559111567... . - Amiram Eldar, Nov 13 2022
a(n) = n * A360541(n). - Amiram Eldar, Sep 01 2023

A356194 a(n) is the smallest multiple of n whose prime factorization exponents are all powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 48, 25, 26, 81, 28, 29, 30, 31, 256, 33, 34, 35, 36, 37, 38, 39, 80, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 162, 55, 112, 57, 58, 59, 60, 61, 62, 63, 256, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^Ceiling[Log2[e]]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(e=logint(n,2)); if(n == 2^e, n, 2^(e+1))};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i,1]^s(f[i,2]))};

Formula

Multiplicative with a(p^e) = p^(2^ceiling(log_2(e))).
a(n) = n iff n is in A138302.

A285769 (Product of distinct prime factors)^(Product of prime exponents).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 13, 14, 15, 16, 17, 36, 19, 100, 21, 22, 23, 216, 25, 26, 27, 196, 29, 30, 31, 32, 33, 34, 35, 1296, 37, 38, 39, 1000, 41, 42, 43, 484, 225, 46, 47, 1296, 49, 100, 51, 676, 53, 216, 55, 2744, 57, 58, 59, 900, 61, 62, 441
Offset: 1

Views

Author

Michael De Vlieger, Apr 25 2017

Keywords

Comments

a(n) and A066638 differ at {36, 72, 100, 108, 144, ...}, i.e., for all n in A036785, since a(n) takes the product of the multiplicities of prime factors of n, while A066638 takes the maximum value of the multiplicities of prime factors of n. For these n, a(n) > A066638(n).
a(1) = 1 since 1 is the empty product; 1^1 = 1.
a(p) = p since omega(p) = A001221(p) = 1 thus p^1 = p.
a(p^m) = p^m since omega(p) = 1 thus p^m is maintained.
For squarefree n with omega(n) > 1, a(n) = n.
For n with omega(n) > 1 and at least one multiplicity m > 1, a(n) > n. In other words, let a(n) = k^m, where k is the product of the distinct prime factors of n and m is the product of the multiplicities of the distinct prime factors of n. a(n) > n for n in A126706 since there are 2 or more prime factors in k and m > 1.
Squarefree kernels of terms a(n) > n: {6, 6, 10, 6, 14, 6, 10, 22, 15, 6, 10, 26, 6, 14, 30, 21, ...}.

Examples

			a(2) = 2 since (2)^(1) = 2^1 = 2.
a(6) = 6 since (2*3)^(1*1) = 6^1 = 6.
a(12) = 36 since (2*3)^(2*1) = 6^2 = 36.
a(30) = 30 since (2*3*5)^(1*1*1) = 30^1 = 30.
a(144) = 1679616 since (2*3)^(4*2) = 6^8 = 1679616.
		

Crossrefs

Programs

  • Mathematica
    Array[Power @@ Map[Times @@ # &, Transpose@ FactorInteger@ #] &, 63] (* Michael De Vlieger, Apr 25 2017 *)
  • Python
    from sympy import divisor_count, divisors
    from sympy.ntheory.factor_ import core
    def rad(n): return max(list(filter(lambda i: core(i) == i, divisors(n))))
    def a(n): return rad(n)**divisor_count(n/rad(n)) # Indranil Ghosh, Apr 26 2017

Formula

a(n) = A007947(n)^A005361(n).

A304776 A weakening function. a(n) = n / A007947(n)^(A051904(n) - 1) where A007947 is squarefree kernel and A051904 is minimum prime exponent.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 2, 65, 66, 67, 68, 69, 70, 71, 12, 73, 74, 75, 76, 77, 78, 79, 80, 3, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

This function takes powerful numbers (A001694) to weak numbers (A052485) and leaves weak numbers unchanged.
First differs from A052410 at a(72) = 12, A052410(72) = 72.

Crossrefs

Programs

  • Mathematica
    spr[n_]:=Module[{f,m},f=FactorInteger[n];m=Min[Last/@f];n/Times@@First/@f^(m-1)];
    Array[spr,100]
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A051904(n) = if((1==n),0,vecmin(factor(n)[, 2]));
    A304776(n) = (n/(A007947(n)^(A051904(n)-1))); \\ Antti Karttunen, May 19 2022
    
  • PARI
    a(n) = if(n == 1, 1, my(f = factor(n), p = f[, 1], e = f[, 2]); n / vecprod(p)^(vecmin(e) - 1)); \\ Amiram Eldar, Sep 12 2024

Formula

a(n) = n / A354090(n). - Antti Karttunen, May 19 2022
Sum_{k=1..n} a(k) ~ n^2 / 2. - Amiram Eldar, Sep 12 2024

Extensions

Data section extended up to a(83) by Antti Karttunen, May 19 2022

A372329 a(n) is the smallest multiple of n whose number of divisors is a power of 2 (A036537).

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 8, 27, 10, 11, 24, 13, 14, 15, 128, 17, 54, 19, 40, 21, 22, 23, 24, 125, 26, 27, 56, 29, 30, 31, 128, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 88, 135, 46, 47, 384, 343, 250, 51, 104, 53, 54, 55, 56, 57, 58, 59, 120, 61, 62, 189, 128, 65
Offset: 1

Views

Author

Amiram Eldar, Apr 28 2024

Keywords

Crossrefs

Differs from A102631 at n = 8, 24, 27, 32, 40, 54, 56, 64, ... .

Programs

  • Mathematica
    f[p_, e_] := p^(2^Ceiling[Log2[e + 1]] - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(e=logint(n + 1, 2)); if(n + 1 == 2^e, n, 2^(e+1) - 1)};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i, 1]^s(f[i, 2]))};

Formula

Multiplicative with a(p^e) = p^(2^ceiling(log_2(e+1)) - 1).
a(n) = n * A372328(n).
a(n) = n if and only if n is in A036537.
a(n) <= n^2, with equality if and only if n = 1.

A304768 Augmented integer conjugate of n. a(n) = (1/n) * A007947(n)^(1 + A051903(n)) where A007947 is squarefree kernel and A051903 is maximum prime exponent.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 18, 13, 14, 15, 2, 17, 12, 19, 50, 21, 22, 23, 54, 5, 26, 3, 98, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 250, 41, 42, 43, 242, 75, 46, 47, 162, 7, 20, 51, 338, 53, 24, 55, 686, 57, 58, 59, 450, 61, 62, 147, 2, 65, 66, 67
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

Image is the weak numbers A052485, on which n -> a(n) is an involution whose fixed points are the squarefree numbers A005117.

Crossrefs

Programs

  • Mathematica
    acj[n_]:=Module[{f,m},f=FactorInteger[n];m=Max[Last/@f];Times@@Table[p[[1]]^(m-p[[2]]+1),{p,f}]];
    Array[acj,100]
  • PARI
    a(n) = {if(n==1, 1, my(f = factor(n), e = vecmax(f[,2]) + 1); prod(i = 1, #f~, f[i,1]^e) / n);} \\ Amiram Eldar, Feb 12 2023

Formula

If n = Product_{i = 1..k} prime(x_i)^y_i, then a(n) = Product_{i = 1..k} prime(x_i)^(max{y_1,...,y_k} - y_i + 1).
Showing 1-9 of 9 results.