A066636 a(n) = A066638(n)/n, where A066638(n) is the smallest power of a squarefree kernel of n that is a multiple of n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 11, 5, 1, 1, 27, 1, 2, 1, 13, 1, 4, 1, 49, 1, 1, 1, 15, 1, 1, 7, 1, 1, 1, 1, 17, 1, 1, 1, 3, 1, 1, 3, 19, 1, 1, 1, 125, 1, 1, 1, 21, 1
Offset: 1
Examples
12 = 2^2*3^1 so m = 3 (3*12 = 36 = 2^2*3^2).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
Array[Apply[Times, #2[[All, 1]]]^Max[#2[[All, -1]] ]/#1 & @@ {#, FactorInteger@ #} &, 85] (* Michael De Vlieger, Nov 20 2017 *)
-
PARI
A066638(n) = { if(n==1, return(1)); my(f=factor(n),me=vecmax(f[, 2])); (prod(i=1, #f~, f[i, 1])^me); }; \\ After Charles R Greathouse IV's code. A066636(n) = (A066638(n)/n); \\ Antti Karttunen, Nov 20 2017
Comments