cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A356191 a(n) is the smallest exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 8, 27, 10, 11, 24, 13, 14, 15, 32, 17, 54, 19, 40, 21, 22, 23, 24, 125, 26, 27, 56, 29, 30, 31, 32, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 88, 135, 46, 47, 96, 343, 250, 51, 104, 53, 54, 55, 56, 57, 58, 59, 120, 61, 62, 189, 128, 65
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^e, p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2]%2, f[i,1]^f[i,2], f[i,1]^(f[i,2]+1)))};
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - p^2*X^2) * (1 + p*X + p^3*X^2 - p^2*X^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 09 2023

Formula

Multiplicative with a(p^e) = p^e if e is odd and p^(e+1) otherwise.
a(n) = n iff n is in A268335.
a(n) = A064549(n)/A007913(n).
a(n) = n*A336643(n).
a(n) = n^2/A350390(n).
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - p^(6-5*s) + p^(7-5*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(3-3*s) - p^(4-3*s) - 2*p^(2-2*s)).
Sum_{k=1..n} a(k) ~ Pi^2 * f(2) * n^2 / 24 * (log(n) + 3*gamma - 1/2 + 12*zeta'(2)/Pi^2 + f'(2)/f(2)), where
f(2) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...,
f'(2) = f(2) * Sum_{p prime} (11*p - 5) * log(p) / (p^3 + p^2 - 3*p + 1) = f(1) * 4.7165968208567630786609552448708126340725121316268495170070986645608062483...
and gamma is the Euler-Mascheroni constant A001620. (End)

A356193 a(n) is the smallest cubefull number (A036966) that is a multiple of n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 16, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Comments

First differs from A053149 and A356192 at n=16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Max[e, 3]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i,1]^max(f[i,2],3))};

Formula

Multiplicative with a(p^e) = p^max(e,3).
a(n) = n iff n is in A036966.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (3*p-2)/(p^3*(p-1))) = 1.76434793373691907811... . - Amiram Eldar, Jul 29 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(3)/4) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 2/p^5 - 1/p^6 - 1/p^8 + 2/p^9 - 1/p^10) = 0.1559111567... . - Amiram Eldar, Nov 13 2022
a(n) = n * A360541(n). - Amiram Eldar, Sep 01 2023

A356194 a(n) is the smallest multiple of n whose prime factorization exponents are all powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 48, 25, 26, 81, 28, 29, 30, 31, 256, 33, 34, 35, 36, 37, 38, 39, 80, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 162, 55, 112, 57, 58, 59, 60, 61, 62, 63, 256, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^Ceiling[Log2[e]]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(e=logint(n,2)); if(n == 2^e, n, 2^(e+1))};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i,1]^s(f[i,2]))};

Formula

Multiplicative with a(p^e) = p^(2^ceiling(log_2(e))).
a(n) = n iff n is in A138302.

A365298 a(n) is the smallest number k such that k*n is a cubefull exponentially odd number (A335988).

Original entry on oeis.org

1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 2, 289, 12, 361, 50, 441, 484, 529, 9, 5, 676, 1, 98, 841, 900, 961, 1, 1089, 1156, 1225, 6, 1369, 1444, 1521, 25, 1681, 1764, 1849, 242, 75, 2116, 2209, 18, 7, 20, 2601, 338, 2809, 4, 3025, 49, 3249, 3364
Offset: 1

Views

Author

Amiram Eldar, Aug 31 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[OddQ[e], Max[e, 3] - e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^if(f[i, 2]%2, max(f[i, 2], 3) - f[i,2], 1))};

Formula

Multiplicative with a(p) = p^2, a(p^e) = p if e is even, and a(p^e) = 1 is e is odd and > 1.
a(n) = A356192(n)/n.
a(n) = 1 if and only if n is in A335988.
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^(3*s) - 1/p^(3*s-2) - 1/p^(2*s) + 1/p^(2*s-1) + 1/p^(s-2)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = (2*Pi^4/315) * Product_{p prime} (1 - p^2 - p^3 + p^4 + p^8 + p^9)/(p^8*(p+1)) = 0.207915752545... .

A367933 a(n) is the smallest multiple of n that is an exponentially odious number (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 48, 25, 26, 81, 28, 29, 30, 31, 128, 33, 34, 35, 36, 37, 38, 39, 80, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 162, 55, 112, 57, 58, 59, 60, 61, 62, 63, 128, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2023

Keywords

Crossrefs

Similar sequences: A356192, A365684, A367934.

Programs

  • Mathematica
    f[p_, e_] := Module[{k = e}, While[! OddQ[DigitCount[k, 2 ,1]], k++]; p^k]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = {my(k = e); while(!(hammingweight(k)%2), k++); k; };
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }

Formula

Multiplicative with a(p^e) = p^s(e), s(e) = min{k >= e, k is odious}.
a(n) = n * A367931(n).
a(n) >= n, with equality if and only if n is an exponentially odious number (A209061).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 1.30023300... , where f(x) = (1-x) * (1 + Sum_{k>=1} x^(2*k-s(k))), and s(k) is defined above.

A367934 a(n) is the smallest multiple of n that is an exponentially evil number (A262675).

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 32, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2023

Keywords

Comments

First differs from A356192 at n = 64.

Crossrefs

Similar sequences: A356192, A365684, A367933.

Programs

  • Mathematica
    f[p_, e_] := Module[{k = e}, While[! EvenQ[DigitCount[k, 2 ,1]], k++]; p^k]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = {my(k = e); while(hammingweight(k)%2, k++); k; };
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }

Formula

Multiplicative with a(p^e) = p^s(e), s(e) = min{k >= e, k is evil}.
a(n) = n * A367932(n).
a(n) >= n, with equality if and only if n is an exponentially evil number (A262675).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = Product_{p prime} f(1/p) = 0.623746285..., where f(x) = (1-x) * (1 + Sum_{k>=1} x^(4*k-s(k))), and s(k) is defined above.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^s(k)) = 1.70170328791367919805... .

A368170 The largest cubefull exponentially odd divisor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 27, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2023

Keywords

Comments

First differs from A008834 at n = 32, and from A366906 at n = 64.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= 2, 1, If[EvenQ[e], p^(e-1), p^e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2] <= 2, 1, if(!(f[i,2]%2), f[i,1]^(f[i, 2]-1), f[i, 1]^f[i, 2])))};

Formula

Multiplicative with a(p^e) = 1 if e <= 2, a(p^e) = p^e if e is odd and e > 1, and p^(e-1) otherwise.
a(n) = n/A368171(n).
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= n, with equality if and only if n is in A335988.

A369757 The number of divisors of the smallest cubefull exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 4, 4, 4, 4, 16, 4, 4, 4, 16, 4, 16, 4, 16, 16, 6, 4, 16, 4, 16, 16, 16, 4, 16, 4, 16, 4, 16, 4, 64, 4, 6, 16, 16, 16, 16, 4, 16, 16, 16, 4, 64, 4, 16, 16, 16, 4, 24, 4, 16, 16, 16, 4, 16, 16, 16, 16, 16, 4, 64, 4, 16, 16, 8, 16, 64, 4, 16, 16, 64, 4, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], Max[e, 3] + 1, e + 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, max(x, 3) + 1, x + 2), factor(n)[, 2]));

Formula

a(n) = A000005(A356192(n)).
Multiplicative with a(p^e) = max(e,3) + 1 if e is odd, and e+2 if e is even.
a(n) >= A000005(n), with equality if and only if n is cubefull exponentially odd number (A335988).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 3/p^s - 1/p^(2*s) - 3/p^(3*s) + 2/p^(4*s)).
From Vaclav Kotesovec, Feb 02 2024: (Start)
Dirichlet g.f.: zeta(s)^4 * Product_{p prime} (1 + (7*p^(2*s) + 2*p^(3*s) - 6*p^(4*s) - 7*p^s + 2) / ((p^s+1)*p^(5*s))).
Sum_{k=1..n} a(k) = c * n*log(n)^3/6 + O(n*log(n)^2), where c = Product_{p prime} (1 - (6*p^4 - 2*p^3 - 7*p^2 + 7*p - 2) / ((p+1)*p^5)) = 0.124604542136592401049820049658828040278... (End)

A369758 The sum of divisors of the smallest cubefull exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 15, 40, 15, 156, 600, 400, 15, 40, 2340, 1464, 600, 2380, 6000, 6240, 63, 5220, 600, 7240, 2340, 16000, 21960, 12720, 600, 156, 35700, 40, 6000, 25260, 93600, 30784, 63, 58560, 78300, 62400, 600, 52060, 108600, 95200, 2340, 70644, 240000, 81400, 21960, 6240
Offset: 1

Views

Author

Amiram Eldar, Jan 31 2024

Keywords

Comments

First differs from A369720 at n = 16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^If[OddQ[e], Max[e, 3] + 1, e + 2] - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^if(f[i,2]%2, max(f[i,2], 3) + 1, f[i,2] + 2) - 1)/(f[i,1] - 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A369758(n): return prod((p**((3 if e==1 else e)+1+(e&1^1))-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Feb 03 2024

Formula

a(n) = A000203(A356192(n)).
Multiplicative with a(p) = p^3 + p^2 + p + 1, a(p^e) = (p^(e+1)-1)/(p-1) for an odd e >= 3, and a(p^e) = (p^(e+2)-1)/(p-1) for an even e.
a(n) >= A000203(n), with equality if and only if n is cubefull exponentially odd number (A335988).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^(s-2) + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(3*s-5) - 1/p^(3*s-4) - 1/p^(3*s-3) + 1/p^(4*s-5) + 1/p^(4*s-4)).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(4) * zeta(6) * Product_{p prime} (1 - 1/p^4 - 1/p^6 + 1/p^10 + 1/p^11 - 1/p^13) = 1.00040193512214077945... .
Equivalently, c = Product_{p prime} (1 + 1/(p^3*(p^4 - 1)*(p^4 + p^2 + 1))). - Vaclav Kotesovec, Feb 02 2024

A369759 The sum of unitary divisors of the smallest cubefull exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 9, 28, 9, 126, 252, 344, 9, 28, 1134, 1332, 252, 2198, 3096, 3528, 33, 4914, 252, 6860, 1134, 9632, 11988, 12168, 252, 126, 19782, 28, 3096, 24390, 31752, 29792, 33, 37296, 44226, 43344, 252, 50654, 61740, 61544, 1134, 68922, 86688, 79508, 11988, 3528, 109512
Offset: 1

Views

Author

Amiram Eldar, Jan 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[OddQ[e], Max[e, 3], e+1] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i,1]^if(f[i,2]%2, max(f[i,2], 3), f[i,2] + 1));}

Formula

a(n) = A034448(A356192(n)).
Multiplicative with a(p) = p^3 + 1, a(p^e) = p^e + 1 for an odd e >= 3, and a(p^e) = p^(e+1) + 1 for an even e.
a(n) >= A034448(n), with equality if and only if n is cubefull exponentially odd number (A335988).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-3) - 1/p^(2*s-2) - 1/p^(3*s-5) + 1/p^(4*s-5) - 1/p^(4*s-3)).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = (zeta(4)*zeta(6)/zeta(2)) * Product_{p prime} (1 - 1/p^6 + 1/p^11 - 1/p^12) = 0.65813930591740259189... .
Showing 1-10 of 11 results. Next