cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A356191 a(n) is the smallest exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 8, 27, 10, 11, 24, 13, 14, 15, 32, 17, 54, 19, 40, 21, 22, 23, 24, 125, 26, 27, 56, 29, 30, 31, 32, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 88, 135, 46, 47, 96, 343, 250, 51, 104, 53, 54, 55, 56, 57, 58, 59, 120, 61, 62, 189, 128, 65
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^e, p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2]%2, f[i,1]^f[i,2], f[i,1]^(f[i,2]+1)))};
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - p^2*X^2) * (1 + p*X + p^3*X^2 - p^2*X^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 09 2023

Formula

Multiplicative with a(p^e) = p^e if e is odd and p^(e+1) otherwise.
a(n) = n iff n is in A268335.
a(n) = A064549(n)/A007913(n).
a(n) = n*A336643(n).
a(n) = n^2/A350390(n).
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - p^(6-5*s) + p^(7-5*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(3-3*s) - p^(4-3*s) - 2*p^(2-2*s)).
Sum_{k=1..n} a(k) ~ Pi^2 * f(2) * n^2 / 24 * (log(n) + 3*gamma - 1/2 + 12*zeta'(2)/Pi^2 + f'(2)/f(2)), where
f(2) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...,
f'(2) = f(2) * Sum_{p prime} (11*p - 5) * log(p) / (p^3 + p^2 - 3*p + 1) = f(1) * 4.7165968208567630786609552448708126340725121316268495170070986645608062483...
and gamma is the Euler-Mascheroni constant A001620. (End)

A356192 a(n) is the smallest cubefull exponentially odd number (A335988) that is divisible by n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 32, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Comments

First differs from A053149 and A356193 at n=16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^Max[e, 3], p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2]%2, f[i,1]^max(f[i,2],3), f[i,1]^(f[i,2]+1)))};

Formula

Multiplicative with a(p^e) = p^max(e,3) if e is odd and p^(e+1) otherwise.
a(n) = n iff n is in A335988.
a(n) = A356191(n) iff n is a powerful number (A001694).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (3*p^2-1)/(p^3*(p^2-1))) = 1.69824776889117043774... .
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(6)/4) * Product_{p prime} (1 - 1/p^2 + 1/p^5 - 2/p^6 + 1/p^8 + 1/p^9 - 1/p^10) = 0.1559368144... . - Amiram Eldar, Nov 13 2022

A356194 a(n) is the smallest multiple of n whose prime factorization exponents are all powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 48, 25, 26, 81, 28, 29, 30, 31, 256, 33, 34, 35, 36, 37, 38, 39, 80, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 162, 55, 112, 57, 58, 59, 60, 61, 62, 63, 256, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^Ceiling[Log2[e]]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(e=logint(n,2)); if(n == 2^e, n, 2^(e+1))};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i,1]^s(f[i,2]))};

Formula

Multiplicative with a(p^e) = p^(2^ceiling(log_2(e))).
a(n) = n iff n is in A138302.

A369720 The sum of divisors of the smallest cubefull number that is a multiple of n.

Original entry on oeis.org

1, 15, 40, 15, 156, 600, 400, 15, 40, 2340, 1464, 600, 2380, 6000, 6240, 31, 5220, 600, 7240, 2340, 16000, 21960, 12720, 600, 156, 35700, 40, 6000, 25260, 93600, 30784, 63, 58560, 78300, 62400, 600, 52060, 108600, 95200, 2340, 70644, 240000, 81400, 21960, 6240
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^If[e <= 2, 4, e + 1]-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i,2] <= 2, f[i,2] = 3)); sigma(f);}

Formula

a(n) = A000203(A356193(n)).
Multiplicative with a(p) = p^3 + p^2 + p + 1 for e <= 2, and a(p^e) = (p^(e+1)-1)/(p-1) for e >= 3.
a(n) >= A000203(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^(s-2) - 1/p^(2*s-4) - 1/p^(2*s-3) - 1/p^(2*s-2) + 1/p^(4*s-4)).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(3) * zeta(4) * Product_{p prime} (1 - 1/p^3 - 1/p^4 + 1/p^7 + 1/p^12 - 1/p^13) = 1.00015013207437782094... .

A369719 The number of divisors of the smallest cubefull number that is a multiple of n.

Original entry on oeis.org

1, 4, 4, 4, 4, 16, 4, 4, 4, 16, 4, 16, 4, 16, 16, 5, 4, 16, 4, 16, 16, 16, 4, 16, 4, 16, 4, 16, 4, 64, 4, 6, 16, 16, 16, 16, 4, 16, 16, 16, 4, 64, 4, 16, 16, 16, 4, 20, 4, 16, 16, 16, 4, 16, 16, 16, 16, 16, 4, 64, 4, 16, 16, 7, 16, 64, 4, 16, 16, 64, 4, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= 2, 4, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x <= 2, 4, x+1), factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X)^2 * ((1 + 2*X - 3*X^2 + X^4)))[n], ", ")) \\ Vaclav Kotesovec, Jan 30 2024

Formula

a(n) = A000005(A356193(n)).
Multiplicative with a(p) = 4 for e <= 2, and a(p^e) = e+1 for e >= 3.
a(n) >= A000005(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + 2/p^s - 3/p^(2*s) + 1/p^(4*s)).
Dirichlet g.f.: zeta(s)^4 * Product_{p prime} (1 + 1/p^(6*s) - 2/p^(5*s) - 2/p^(4*s) + 8/p^(3*s) - 6/p^(2*s)). - Vaclav Kotesovec, Jan 30 2024

A369721 The sum of unitary divisors of the smallest cubefull number that is a multiple of n.

Original entry on oeis.org

1, 9, 28, 9, 126, 252, 344, 9, 28, 1134, 1332, 252, 2198, 3096, 3528, 17, 4914, 252, 6860, 1134, 9632, 11988, 12168, 252, 126, 19782, 28, 3096, 24390, 31752, 29792, 33, 37296, 44226, 43344, 252, 50654, 61740, 61544, 1134, 68922, 86688, 79508, 11988, 3528, 109512
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= 2, p^3 + 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= 2, 1 + f[i,1]^3, 1 + f[i,1]^f[i,2]));}

Formula

a(n) = A034448(A356193(n)).
Multiplicative with a(p) = p^3 + 1 for e <= 2, and a(p^e) = p^e + 1 for e >= 3.
a(n) >= A034448(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-3) - 1/p^(s-1) - 1/p^(2*s-4) + 1/p^(4*s-4) - 1/p^(4*s-3) ).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(3) * zeta(4) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^5 + 1/p^12 - 2/p^13 + 1/p^14) = 0.65803546696642353777... .

A372329 a(n) is the smallest multiple of n whose number of divisors is a power of 2 (A036537).

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 8, 27, 10, 11, 24, 13, 14, 15, 128, 17, 54, 19, 40, 21, 22, 23, 24, 125, 26, 27, 56, 29, 30, 31, 128, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 88, 135, 46, 47, 384, 343, 250, 51, 104, 53, 54, 55, 56, 57, 58, 59, 120, 61, 62, 189, 128, 65
Offset: 1

Views

Author

Amiram Eldar, Apr 28 2024

Keywords

Crossrefs

Differs from A102631 at n = 8, 24, 27, 32, 40, 54, 56, 64, ... .

Programs

  • Mathematica
    f[p_, e_] := p^(2^Ceiling[Log2[e + 1]] - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(e=logint(n + 1, 2)); if(n + 1 == 2^e, n, 2^(e+1) - 1)};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i, 1]^s(f[i, 2]))};

Formula

Multiplicative with a(p^e) = p^(2^ceiling(log_2(e+1)) - 1).
a(n) = n * A372328(n).
a(n) = n if and only if n is in A036537.
a(n) <= n^2, with equality if and only if n = 1.

A360541 a(n) is the least number k such that k*n is a cubefull number (A036966).

Original entry on oeis.org

1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 1, 289, 12, 361, 50, 441, 484, 529, 9, 5, 676, 1, 98, 841, 900, 961, 1, 1089, 1156, 1225, 6, 1369, 1444, 1521, 25, 1681, 1764, 1849, 242, 75, 2116, 2209, 9, 7, 20, 2601, 338, 2809, 4, 3025, 49, 3249, 3364
Offset: 1

Views

Author

Amiram Eldar, Feb 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(Max[e, 3] - e); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i, 1]^(max(f[i, 2], 3) - f[i, 2]));}

Formula

a(n) = 1 if and only if n is cubefull number (A036966).
a(n) = A356193(n)/n.
a(n) = A360539(n)^2/A329376(n)^3.
Multiplicative with a(p^e) = p^(max(e, 3) - e), i.e., a(p) = p^2, a(p^2) = p, and a(p^e) = 1 for e >= 3.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(2-s) - p^(-s) - p^(2-2*s) + p^(1-2*s) - p^(1-3*s) + p^(-3*s)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 2/p^5 - 1/p^6 - 1/p^8 + 2/p^9 - 1/p^10) = 0.2078815423... .
Showing 1-8 of 8 results.