cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A356192 a(n) is the smallest cubefull exponentially odd number (A335988) that is divisible by n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 32, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Comments

First differs from A053149 and A356193 at n=16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^Max[e, 3], p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2]%2, f[i,1]^max(f[i,2],3), f[i,1]^(f[i,2]+1)))};

Formula

Multiplicative with a(p^e) = p^max(e,3) if e is odd and p^(e+1) otherwise.
a(n) = n iff n is in A335988.
a(n) = A356191(n) iff n is a powerful number (A001694).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (3*p^2-1)/(p^3*(p^2-1))) = 1.69824776889117043774... .
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(6)/4) * Product_{p prime} (1 - 1/p^2 + 1/p^5 - 2/p^6 + 1/p^8 + 1/p^9 - 1/p^10) = 0.1559368144... . - Amiram Eldar, Nov 13 2022

A336643 Squarefree kernel of n divided by the squarefree part of n: a(n) = rad(n) / core(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

a(n) is the least number k such that k*n (and also n/k) is an exponentially odd number (A268335). - Amiram Eldar, Nov 18 2022

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(1 - Mod[e, 2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
  • PARI
    A336643(n) = (factorback(factorint(n)[, 1]) / core(n));
    
  • PARI
    A336643(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^(1-(f[i, 2]%2))));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-X^2) * (1 + X + p*X^2 - X^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 09 2023
    
  • Python
    from math import prod
    from sympy.ntheory.factor_ import primefactors, core
    def A336643(n): return prod(primefactors(n))//core(n) # Chai Wah Wu, Dec 30 2021
    
  • SageMath
    def A336643(n: int) -> int:
        return prod(b^(1 - e % 2) for (b, e) in list(factor(n)))
    print([A336643(n) for n in range(1, 106)])  # Peter Luschny, Aug 23 2025

Formula

a(n) = A007947(n) / A007913(n).
Multiplicative with a(p^k) = p^(1-(k mod 2)) = p^A059841(k).
a(n) = n/A350390(n). - Amiram Eldar, Jan 01 2022
a(n) = A356191(n)/n. - Amiram Eldar, Nov 18 2022
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-1) - 1/p^(2*s)). - Amiram Eldar, Sep 09 2023
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - p^(1-5*s) + p^(2-5*s) + 2*p^(1-4*s) - p^(2-4*s) - p^(1-3*s) + p^(-3*s) - 2*p^(-2*s)).
Dirichlet g.f.: zeta(s) * zeta(2*s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ Pi^2 * f(1) * n / 12 * (log(n) + 3*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.217778716619536378323007514119446813130797755001355937648276403523626491...,
f'(1) = f(1) * Sum_{p prime} (11*p - 5) * log(p) / (p^3 + p^2 - 3*p + 1) = f(1) * 4.716596820856763078660955244870812634072512131626849517007098664560806248...
and gamma is the Euler-Mascheroni constant A001620. (End)

A356193 a(n) is the smallest cubefull number (A036966) that is a multiple of n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 16, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Comments

First differs from A053149 and A356192 at n=16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Max[e, 3]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i,1]^max(f[i,2],3))};

Formula

Multiplicative with a(p^e) = p^max(e,3).
a(n) = n iff n is in A036966.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (3*p-2)/(p^3*(p-1))) = 1.76434793373691907811... . - Amiram Eldar, Jul 29 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(3)/4) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 2/p^5 - 1/p^6 - 1/p^8 + 2/p^9 - 1/p^10) = 0.1559111567... . - Amiram Eldar, Nov 13 2022
a(n) = n * A360541(n). - Amiram Eldar, Sep 01 2023

A356194 a(n) is the smallest multiple of n whose prime factorization exponents are all powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 48, 25, 26, 81, 28, 29, 30, 31, 256, 33, 34, 35, 36, 37, 38, 39, 80, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 162, 55, 112, 57, 58, 59, 60, 61, 62, 63, 256, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^Ceiling[Log2[e]]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(e=logint(n,2)); if(n == 2^e, n, 2^(e+1))};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i,1]^s(f[i,2]))};

Formula

Multiplicative with a(p^e) = p^(2^ceiling(log_2(e))).
a(n) = n iff n is in A138302.

A011264 In the prime factorization of n, increment even powers and decrement odd powers (multiplicative).

Original entry on oeis.org

1, 1, 1, 8, 1, 1, 1, 4, 27, 1, 1, 8, 1, 1, 1, 32, 1, 27, 1, 8, 1, 1, 1, 4, 125, 1, 9, 8, 1, 1, 1, 16, 1, 1, 1, 216, 1, 1, 1, 4, 1, 1, 1, 8, 27, 1, 1, 32, 343, 125, 1, 8, 1, 9, 1, 4, 1, 1, 1, 8, 1, 1, 27, 128, 1, 1, 1, 8, 1, 1, 1, 108, 1, 1, 125, 8, 1, 1, 1, 32, 243, 1, 1, 8, 1, 1, 1, 4, 1, 27, 1, 8, 1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a011264 n = product $ zipWith (^)
                          (a027748_row n) (map a004442 $ a124010_row n)
    -- Reinhard Zumkeller, Jun 23 2013
    
  • Mathematica
    f[n_, k_] := n^(If[EvenQ[k], k + 1, k - 1]); Table[Times @@ f @@@ FactorInteger[n], {n, 94}] (* Jayanta Basu, Aug 14 2013 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^if(f[i,2]%2, f[i,2]-1, f[i,2]+1));} \\ Amiram Eldar, Jan 07 2023

Formula

a(n) = Product_{k=1..A001221(n)} (A027748(n,k)^A004442(A124010(n,k))). - Reinhard Zumkeller, Jun 23 2013
From Amiram Eldar, Jan 07 2023: (Start)
a(n) = n^2/A011262(n).
a(n) = n*A007947(n)/A007913(n)^2.
a(n) = n*A336643(n)/A007913(n).
a(n) = A356191(n)/A007913(n). (End)
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-3) - 1/p^(2*s-2)). - Amiram Eldar, Sep 21 2023
From Vaclav Kotesovec, May 06 2025: (Start)
Dirichlet g.f.: zeta(2*s-3) * Product_{p prime} (1 + (p-1)*p^(3-2*s) + p^(1-s) - (p-1)*(p^s + p^3)/(p^(2*s) - p^2)).
Sum_{k=1..n} a(k) ~ n^2/4. (End)

A355038 a(n) = n^2 times the squarefree kernel of n.

Original entry on oeis.org

1, 8, 27, 32, 125, 216, 343, 128, 243, 1000, 1331, 864, 2197, 2744, 3375, 512, 4913, 1944, 6859, 4000, 9261, 10648, 12167, 3456, 3125, 17576, 2187, 10976, 24389, 27000, 29791, 2048, 35937, 39304, 42875, 7776, 50653, 54872, 59319, 16000, 68921, 74088, 79507, 42592, 30375
Offset: 1

Views

Author

Peter Munn, Jun 16 2022

Keywords

Crossrefs

The range of values is A335988.

Programs

  • Mathematica
    a[n_] := n^2 * Times @@ FactorInteger[n][[;; , 1]]; Array[a, 50] (* Amiram Eldar, Jun 18 2022 *)
  • PARI
    a(n) = n^2 * factorback(factor(n)[,1]);

Formula

Multiplicative with a(p^e) = p^(2e+1).
a(n) = n^2 * A007947(n).
a(n) = A064549(n^2). - Amiram Eldar, Jun 20 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = (1/4) * Product_{p prime} (1 - 1/(p*(p+1))) = A065463 / 4 = 0.1761105502... . - Amiram Eldar, Nov 13 2022
a(n) = A356191(n^2). - Amiram Eldar, Nov 30 2023

A365349 The sum of divisors of the smallest exponentially odd number divisible by n.

Original entry on oeis.org

1, 3, 4, 15, 6, 12, 8, 15, 40, 18, 12, 60, 14, 24, 24, 63, 18, 120, 20, 90, 32, 36, 24, 60, 156, 42, 40, 120, 30, 72, 32, 63, 48, 54, 48, 600, 38, 60, 56, 90, 42, 96, 44, 180, 240, 72, 48, 252, 400, 468, 72, 210, 54, 120, 72, 120, 80, 90, 60, 360, 62, 96, 320
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 2 - Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 2 - f[i,2]%2) - 1)/(f[i,1] - 1));}
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * 1/(1 - p^2*X^2) * (1 + p*X + p^3*X^2 - p^3*X^3) )[n], ", ")) \\ Vaclav Kotesovec, Sep 04 2023

Formula

a(n) = A000203(A356191(n)).
Multiplicative with a(p^e) = (p^(e + 2 - (e mod 2)) - 1)/(p - 1).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-3) - 1/p^(3*s-3)).
From Vaclav Kotesovec, Sep 04 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(2*s-2) * zeta(2*s-3) * Product_{p prime} (1 - 1/p^(6*s-7) + 1/p^(5*s-6) + 1/p^(5*s-7) + 1/p^(4*s-4) + 1/p^(4*s-5) - 1/p^(4*s-6) - 1/p^(3*s-3) - 1/p^(3*s-4) - 1/p^(2*s-2)).
Let f(s) = Product_{p prime} (1 - 1/p^(6*s-7) + 1/p^(5*s-6) + 1/p^(5*s-7) + 1/p^(4*s-4) + 1/p^(4*s-5) - 1/p^(4*s-6) - 1/p^(3*s-3) - 1/p^(3*s-4) - 1/p^(2*s-2)), then
Sum_{k=1..n} a(k) ~ n^2 * Pi^4 * f(2) / 144 * (log(n) + 3*gamma - 1/2 + 18*zeta'(2)/Pi^2 + f'(2)/f(2)), where
f(2) = Product_{p prime} (1 - 1/p^2) * (1 - 2/p^2 + 1/p^3) = 6*A065464/Pi^2 = 0.26034448085669554670553581687050222309091096557569931376863612821007515...,
f'(2) = f(2) * Sum_{p prime} 3*(3*p-2) * log(p) / (p^3 - 2*p + 1) = f(2) * 4.40861022247384449961018198035049309399000439627743168713608947117149645... and gamma is the Euler-Mascheroni constant A001620. (End)

A365480 The sum of unitary divisors of the smallest exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 9, 28, 18, 12, 36, 14, 24, 24, 33, 18, 84, 20, 54, 32, 36, 24, 36, 126, 42, 28, 72, 30, 72, 32, 33, 48, 54, 48, 252, 38, 60, 56, 54, 42, 96, 44, 108, 168, 72, 48, 132, 344, 378, 72, 126, 54, 84, 72, 72, 80, 90, 60, 216, 62, 96, 224, 129, 84
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of unitary divisors of the smallest exponentially odd number that is divisible by n is the same as the number of unitary divisors of n, A034444(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e + 1 - Mod[e, 2]) + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^(f[i,2] + 1 - f[i,2]%2) + 1);}

Formula

a(n) = A034448(A356191(n)).
Multiplicative with a(p^e) = p^(e + 1 - (e mod 2)) + 1.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-3) - 1/p^(2*s-2) - 1/p^(2*s-1) - 1/p^(3*s-3)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(2*s-2) * zeta(2*s-3) * Product_{p prime} (1 - p^(7-6*s) - p^(5-5*s) + p^(7-5*s) + 2*p^(4-4*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(2-3*s) - p^(4-3*s) - p^(1-2*s) - 2*p^(2-2*s)).
Let f(s) = Product_{p prime} (1 - p^(7-6*s) - p^(5-5*s) + p^(7-5*s) + 2*p^(4-4*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(2-3*s) - p^(4-3*s) - p^(1-2*s) - 2*p^(2-2*s)).
Sum_{k=1..n} a(k) ~ n^2 * Pi^4 * f(2) / 144 * (log(n) + 3*gamma - 1/2 + 18*zeta'(2)/Pi^2 + f'(2)/f(2)), where
f(2) = Product_{p prime} (1 - 4/p^2 + 2/p^3 + 3/p^4 - 2/p^5) = 0.17432153313226756485612314112586411632220602294650993976966957787608316...,
f'(2) = f(2) * Sum_{p prime} 11 * log(p) / (p^2 + p - 2) = f(2) * 5.12969275236278527949034734003948649118572887258486718244613616120875581...
and gamma is the Euler-Mascheroni constant A001620. (End)

A365348 The number of divisors of the smallest exponentially odd number divisible by n.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 6, 2, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 8, 2, 8, 2, 6, 4, 4, 4, 16, 2, 4, 4, 8, 2, 8, 2, 8, 8, 4, 2, 12, 4, 8, 4, 8, 2, 8, 4, 8, 4, 4, 2, 16, 2, 4, 8, 8, 4, 8, 2, 8, 4, 8, 2, 16, 2, 4, 8, 8, 4, 8, 2, 12, 6, 4, 2, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2023

Keywords

Comments

The sum of these divisors is A365349(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e + 2 - Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> x + 2 - x%2, factor(n)[, 2]));

Formula

a(n) = A000005(A356191(n)).
Multiplicative with a(p^e) = e + 2 - (e mod 2).
Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Let f(s) = Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^2 * n / 6 * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.74469549790606742043912387159445432811796913290492411186307181370150975026...
f'(1) = f(1) * Sum_{p prime} 2*(3*p - 2) * log(p) / (1 - 2*p + p^4) = f(1) * 0.75575434641494973924789411019492794958528241212857430737760075121773728338...
and gamma is the Euler-Mascheroni constant A001620. (End)

A372329 a(n) is the smallest multiple of n whose number of divisors is a power of 2 (A036537).

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 8, 27, 10, 11, 24, 13, 14, 15, 128, 17, 54, 19, 40, 21, 22, 23, 24, 125, 26, 27, 56, 29, 30, 31, 128, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 88, 135, 46, 47, 384, 343, 250, 51, 104, 53, 54, 55, 56, 57, 58, 59, 120, 61, 62, 189, 128, 65
Offset: 1

Views

Author

Amiram Eldar, Apr 28 2024

Keywords

Crossrefs

Differs from A102631 at n = 8, 24, 27, 32, 40, 54, 56, 64, ... .

Programs

  • Mathematica
    f[p_, e_] := p^(2^Ceiling[Log2[e + 1]] - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(e=logint(n + 1, 2)); if(n + 1 == 2^e, n, 2^(e+1) - 1)};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i, 1]^s(f[i, 2]))};

Formula

Multiplicative with a(p^e) = p^(2^ceiling(log_2(e+1)) - 1).
a(n) = n * A372328(n).
a(n) = n if and only if n is in A036537.
a(n) <= n^2, with equality if and only if n = 1.
Showing 1-10 of 12 results. Next