cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365480 The sum of unitary divisors of the smallest exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 9, 28, 18, 12, 36, 14, 24, 24, 33, 18, 84, 20, 54, 32, 36, 24, 36, 126, 42, 28, 72, 30, 72, 32, 33, 48, 54, 48, 252, 38, 60, 56, 54, 42, 96, 44, 108, 168, 72, 48, 132, 344, 378, 72, 126, 54, 84, 72, 72, 80, 90, 60, 216, 62, 96, 224, 129, 84
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of unitary divisors of the smallest exponentially odd number that is divisible by n is the same as the number of unitary divisors of n, A034444(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e + 1 - Mod[e, 2]) + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^(f[i,2] + 1 - f[i,2]%2) + 1);}

Formula

a(n) = A034448(A356191(n)).
Multiplicative with a(p^e) = p^(e + 1 - (e mod 2)) + 1.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-3) - 1/p^(2*s-2) - 1/p^(2*s-1) - 1/p^(3*s-3)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(2*s-2) * zeta(2*s-3) * Product_{p prime} (1 - p^(7-6*s) - p^(5-5*s) + p^(7-5*s) + 2*p^(4-4*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(2-3*s) - p^(4-3*s) - p^(1-2*s) - 2*p^(2-2*s)).
Let f(s) = Product_{p prime} (1 - p^(7-6*s) - p^(5-5*s) + p^(7-5*s) + 2*p^(4-4*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(2-3*s) - p^(4-3*s) - p^(1-2*s) - 2*p^(2-2*s)).
Sum_{k=1..n} a(k) ~ n^2 * Pi^4 * f(2) / 144 * (log(n) + 3*gamma - 1/2 + 18*zeta'(2)/Pi^2 + f'(2)/f(2)), where
f(2) = Product_{p prime} (1 - 4/p^2 + 2/p^3 + 3/p^4 - 2/p^5) = 0.17432153313226756485612314112586411632220602294650993976966957787608316...,
f'(2) = f(2) * Sum_{p prime} 11 * log(p) / (p^2 + p - 2) = f(2) * 5.12969275236278527949034734003948649118572887258486718244613616120875581...
and gamma is the Euler-Mascheroni constant A001620. (End)

A365348 The number of divisors of the smallest exponentially odd number divisible by n.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 6, 2, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 8, 2, 8, 2, 6, 4, 4, 4, 16, 2, 4, 4, 8, 2, 8, 2, 8, 8, 4, 2, 12, 4, 8, 4, 8, 2, 8, 4, 8, 4, 4, 2, 16, 2, 4, 8, 8, 4, 8, 2, 8, 4, 8, 2, 16, 2, 4, 8, 8, 4, 8, 2, 12, 6, 4, 2, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2023

Keywords

Comments

The sum of these divisors is A365349(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e + 2 - Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> x + 2 - x%2, factor(n)[, 2]));

Formula

a(n) = A000005(A356191(n)).
Multiplicative with a(p^e) = e + 2 - (e mod 2).
Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Let f(s) = Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^2 * n / 6 * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.74469549790606742043912387159445432811796913290492411186307181370150975026...
f'(1) = f(1) * Sum_{p prime} 2*(3*p - 2) * log(p) / (1 - 2*p + p^4) = f(1) * 0.75575434641494973924789411019492794958528241212857430737760075121773728338...
and gamma is the Euler-Mascheroni constant A001620. (End)

A369758 The sum of divisors of the smallest cubefull exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 15, 40, 15, 156, 600, 400, 15, 40, 2340, 1464, 600, 2380, 6000, 6240, 63, 5220, 600, 7240, 2340, 16000, 21960, 12720, 600, 156, 35700, 40, 6000, 25260, 93600, 30784, 63, 58560, 78300, 62400, 600, 52060, 108600, 95200, 2340, 70644, 240000, 81400, 21960, 6240
Offset: 1

Views

Author

Amiram Eldar, Jan 31 2024

Keywords

Comments

First differs from A369720 at n = 16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^If[OddQ[e], Max[e, 3] + 1, e + 2] - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^if(f[i,2]%2, max(f[i,2], 3) + 1, f[i,2] + 2) - 1)/(f[i,1] - 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A369758(n): return prod((p**((3 if e==1 else e)+1+(e&1^1))-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Feb 03 2024

Formula

a(n) = A000203(A356192(n)).
Multiplicative with a(p) = p^3 + p^2 + p + 1, a(p^e) = (p^(e+1)-1)/(p-1) for an odd e >= 3, and a(p^e) = (p^(e+2)-1)/(p-1) for an even e.
a(n) >= A000203(n), with equality if and only if n is cubefull exponentially odd number (A335988).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^(s-2) + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(3*s-5) - 1/p^(3*s-4) - 1/p^(3*s-3) + 1/p^(4*s-5) + 1/p^(4*s-4)).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(4) * zeta(6) * Product_{p prime} (1 - 1/p^4 - 1/p^6 + 1/p^10 + 1/p^11 - 1/p^13) = 1.00040193512214077945... .
Equivalently, c = Product_{p prime} (1 + 1/(p^3*(p^4 - 1)*(p^4 + p^2 + 1))). - Vaclav Kotesovec, Feb 02 2024
Showing 1-3 of 3 results.