cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365479 The sum of unitary divisors of the smallest square divisible by n.

Original entry on oeis.org

1, 5, 10, 5, 26, 50, 50, 17, 10, 130, 122, 50, 170, 250, 260, 17, 290, 50, 362, 130, 500, 610, 530, 170, 26, 850, 82, 250, 842, 1300, 962, 65, 1220, 1450, 1300, 50, 1370, 1810, 1700, 442, 1682, 2500, 1850, 610, 260, 2650, 2210, 170, 50, 130, 2900, 850, 2810, 410
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of unitary divisors of the smallest square divisible by n is the same as the number of unitary divisors of n, A034444(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + p^(e + Mod[e, 2]); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^(f[i,2] + f[i,2]%2) + 1);}
    
  • Python
    from math import prod
    from sympy import factorint
    def A365479(n): return prod(p**(e+(e&1))+1 for p,e in factorint(n).items()) # Chai Wah Wu, Sep 05 2023

Formula

a(n) = A034448(A053143(n)).
Multiplicative with a(p^e) = p^(e + (e mod 2)) + 1.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-2) - 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/45) * zeta(3) * Product_{p prime} (1 - 1/p^4 + 1/p^5 - 1/p^6) = 0.248414056414... .

A365481 The sum of unitary divisors of the smallest number whose square is divisible by n.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 5, 4, 18, 12, 12, 14, 24, 24, 5, 18, 12, 20, 18, 32, 36, 24, 20, 6, 42, 10, 24, 30, 72, 32, 9, 48, 54, 48, 12, 38, 60, 56, 30, 42, 96, 44, 36, 24, 72, 48, 20, 8, 18, 72, 42, 54, 30, 72, 40, 80, 90, 60, 72, 62, 96, 32, 9, 84, 144, 68, 54, 96
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of unitary divisors of the smallest number whose square is divisible by n is the same as the number of unitary divisors of n, A034444(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Ceiling[e/2] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^ceil(f[i,2]/2) + 1);}
    
  • Python
    from math import prod
    from sympy import factorint
    def A365481(n): return prod(p**((e>>1)+(e&1))+1 for p,e in factorint(n).items()) # Chai Wah Wu, Sep 05 2023

Formula

a(n) = A034448(A019554(n)).
Multiplicative with a(p^e) = p^(ceiling(e/2)) + 1.
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-1) - 1/p^(3*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * zeta(2) * zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 - 1/p^5 + 1/p^6) = 0.515959523197... .

A369759 The sum of unitary divisors of the smallest cubefull exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 9, 28, 9, 126, 252, 344, 9, 28, 1134, 1332, 252, 2198, 3096, 3528, 33, 4914, 252, 6860, 1134, 9632, 11988, 12168, 252, 126, 19782, 28, 3096, 24390, 31752, 29792, 33, 37296, 44226, 43344, 252, 50654, 61740, 61544, 1134, 68922, 86688, 79508, 11988, 3528, 109512
Offset: 1

Views

Author

Amiram Eldar, Jan 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[OddQ[e], Max[e, 3], e+1] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i,1]^if(f[i,2]%2, max(f[i,2], 3), f[i,2] + 1));}

Formula

a(n) = A034448(A356192(n)).
Multiplicative with a(p) = p^3 + 1, a(p^e) = p^e + 1 for an odd e >= 3, and a(p^e) = p^(e+1) + 1 for an even e.
a(n) >= A034448(n), with equality if and only if n is cubefull exponentially odd number (A335988).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-3) - 1/p^(2*s-2) - 1/p^(3*s-5) + 1/p^(4*s-5) - 1/p^(4*s-3)).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = (zeta(4)*zeta(6)/zeta(2)) * Product_{p prime} (1 - 1/p^6 + 1/p^11 - 1/p^12) = 0.65813930591740259189... .
Showing 1-3 of 3 results.