A365480 The sum of unitary divisors of the smallest exponentially odd number that is divisible by n.
1, 3, 4, 9, 6, 12, 8, 9, 28, 18, 12, 36, 14, 24, 24, 33, 18, 84, 20, 54, 32, 36, 24, 36, 126, 42, 28, 72, 30, 72, 32, 33, 48, 54, 48, 252, 38, 60, 56, 54, 42, 96, 44, 108, 168, 72, 48, 132, 344, 378, 72, 126, 54, 84, 72, 72, 80, 90, 60, 216, 62, 96, 224, 129, 84
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio (1000000 terms)
Programs
-
Mathematica
f[p_, e_] := p^(e + 1 - Mod[e, 2]) + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^(f[i,2] + 1 - f[i,2]%2) + 1);}
Formula
Multiplicative with a(p^e) = p^(e + 1 - (e mod 2)) + 1.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-3) - 1/p^(2*s-2) - 1/p^(2*s-1) - 1/p^(3*s-3)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(2*s-2) * zeta(2*s-3) * Product_{p prime} (1 - p^(7-6*s) - p^(5-5*s) + p^(7-5*s) + 2*p^(4-4*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(2-3*s) - p^(4-3*s) - p^(1-2*s) - 2*p^(2-2*s)).
Let f(s) = Product_{p prime} (1 - p^(7-6*s) - p^(5-5*s) + p^(7-5*s) + 2*p^(4-4*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(2-3*s) - p^(4-3*s) - p^(1-2*s) - 2*p^(2-2*s)).
Sum_{k=1..n} a(k) ~ n^2 * Pi^4 * f(2) / 144 * (log(n) + 3*gamma - 1/2 + 18*zeta'(2)/Pi^2 + f'(2)/f(2)), where
f(2) = Product_{p prime} (1 - 4/p^2 + 2/p^3 + 3/p^4 - 2/p^5) = 0.17432153313226756485612314112586411632220602294650993976966957787608316...,
f'(2) = f(2) * Sum_{p prime} 11 * log(p) / (p^2 + p - 2) = f(2) * 5.12969275236278527949034734003948649118572887258486718244613616120875581...
and gamma is the Euler-Mascheroni constant A001620. (End)
Comments