cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365349 The sum of divisors of the smallest exponentially odd number divisible by n.

Original entry on oeis.org

1, 3, 4, 15, 6, 12, 8, 15, 40, 18, 12, 60, 14, 24, 24, 63, 18, 120, 20, 90, 32, 36, 24, 60, 156, 42, 40, 120, 30, 72, 32, 63, 48, 54, 48, 600, 38, 60, 56, 90, 42, 96, 44, 180, 240, 72, 48, 252, 400, 468, 72, 210, 54, 120, 72, 120, 80, 90, 60, 360, 62, 96, 320
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 2 - Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 2 - f[i,2]%2) - 1)/(f[i,1] - 1));}
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * 1/(1 - p^2*X^2) * (1 + p*X + p^3*X^2 - p^3*X^3) )[n], ", ")) \\ Vaclav Kotesovec, Sep 04 2023

Formula

a(n) = A000203(A356191(n)).
Multiplicative with a(p^e) = (p^(e + 2 - (e mod 2)) - 1)/(p - 1).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-3) - 1/p^(3*s-3)).
From Vaclav Kotesovec, Sep 04 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(2*s-2) * zeta(2*s-3) * Product_{p prime} (1 - 1/p^(6*s-7) + 1/p^(5*s-6) + 1/p^(5*s-7) + 1/p^(4*s-4) + 1/p^(4*s-5) - 1/p^(4*s-6) - 1/p^(3*s-3) - 1/p^(3*s-4) - 1/p^(2*s-2)).
Let f(s) = Product_{p prime} (1 - 1/p^(6*s-7) + 1/p^(5*s-6) + 1/p^(5*s-7) + 1/p^(4*s-4) + 1/p^(4*s-5) - 1/p^(4*s-6) - 1/p^(3*s-3) - 1/p^(3*s-4) - 1/p^(2*s-2)), then
Sum_{k=1..n} a(k) ~ n^2 * Pi^4 * f(2) / 144 * (log(n) + 3*gamma - 1/2 + 18*zeta'(2)/Pi^2 + f'(2)/f(2)), where
f(2) = Product_{p prime} (1 - 1/p^2) * (1 - 2/p^2 + 1/p^3) = 6*A065464/Pi^2 = 0.26034448085669554670553581687050222309091096557569931376863612821007515...,
f'(2) = f(2) * Sum_{p prime} 3*(3*p-2) * log(p) / (p^3 - 2*p + 1) = f(2) * 4.40861022247384449961018198035049309399000439627743168713608947117149645... and gamma is the Euler-Mascheroni constant A001620. (End)

A369757 The number of divisors of the smallest cubefull exponentially odd number that is divisible by n.

Original entry on oeis.org

1, 4, 4, 4, 4, 16, 4, 4, 4, 16, 4, 16, 4, 16, 16, 6, 4, 16, 4, 16, 16, 16, 4, 16, 4, 16, 4, 16, 4, 64, 4, 6, 16, 16, 16, 16, 4, 16, 16, 16, 4, 64, 4, 16, 16, 16, 4, 24, 4, 16, 16, 16, 4, 16, 16, 16, 16, 16, 4, 64, 4, 16, 16, 8, 16, 64, 4, 16, 16, 64, 4, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], Max[e, 3] + 1, e + 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, max(x, 3) + 1, x + 2), factor(n)[, 2]));

Formula

a(n) = A000005(A356192(n)).
Multiplicative with a(p^e) = max(e,3) + 1 if e is odd, and e+2 if e is even.
a(n) >= A000005(n), with equality if and only if n is cubefull exponentially odd number (A335988).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 3/p^s - 1/p^(2*s) - 3/p^(3*s) + 2/p^(4*s)).
From Vaclav Kotesovec, Feb 02 2024: (Start)
Dirichlet g.f.: zeta(s)^4 * Product_{p prime} (1 + (7*p^(2*s) + 2*p^(3*s) - 6*p^(4*s) - 7*p^s + 2) / ((p^s+1)*p^(5*s))).
Sum_{k=1..n} a(k) = c * n*log(n)^3/6 + O(n*log(n)^2), where c = Product_{p prime} (1 - (6*p^4 - 2*p^3 - 7*p^2 + 7*p - 2) / ((p+1)*p^5)) = 0.124604542136592401049820049658828040278... (End)
Showing 1-2 of 2 results.