cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A304326 Number of ways to write n as a product of a number that is not a perfect power and a squarefree number.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 0, 1, 3, 1, 3, 1, 3, 3, 0, 1, 3, 1, 3, 3, 3, 1, 2, 1, 3, 0, 3, 1, 7, 1, 0, 3, 3, 3, 3, 1, 3, 3, 2, 1, 7, 1, 3, 3, 3, 1, 2, 1, 3, 3, 3, 1, 2, 3, 2, 3, 3, 1, 7, 1, 3, 3, 0, 3, 7, 1, 3, 3, 7, 1, 3, 1, 3, 3, 3, 3, 7, 1, 2, 0, 3, 1, 7, 3, 3, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 10 2018

Keywords

Examples

			The a(180) = 7 ways are (6*30), (12*15), (18*10), (30*6), (60*3), (90*2), (180*1).
		

Crossrefs

Positions of zeros are A246549. Range appears to be A075427.

Programs

  • Mathematica
    radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]===1];
    Table[Length[Select[Divisors[n],radQ[#]&&SquareFreeQ[n/#]&]],{n,100}]
  • PARI
    a(n)={sumdiv(n, d, d<>1 && !ispower(d) && issquarefree(n/d))} \\ Andrew Howroyd, Aug 26 2018

A304327 Number of ways to write n as a product of a perfect power and a squarefree number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 10 2018

Keywords

Comments

First term greater than 2 is a(746496) = 3.

Examples

			The a(746496) = 3 ways are 12^5*3, 72^3*2, 864^2*1.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],(#===1||GCD@@FactorInteger[#][[All,2]]>1)&&SquareFreeQ[n/#]&]],{n,100}]
  • PARI
    A304327(n) = sumdiv(n,d,issquarefree(n/d)*((1==d)||ispower(d))); \\ Antti Karttunen, Jul 29 2018

Extensions

More terms from Antti Karttunen, Jul 29 2018

A304339 Fixed point of f starting with n, where f(x) = x/(largest perfect power divisor of x).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 3, 1, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 1, 37, 38, 39, 5, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 2
Offset: 1

Views

Author

Gus Wiseman, May 11 2018

Keywords

Comments

All terms are squarefree numbers. First differs from A304328 at a(500) = 1, A304328(500) = 4.

Examples

			f maps 500 -> 4 -> 1 -> 1, so a(500) = 1.
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]===1];
    op[n_]:=n/Last[Select[Divisors[n],!radQ[#]&]];
    Table[FixedPoint[op,n],{n,200}]
  • PARI
    a(n)={while(1, my(m=1); fordiv(n, d, if(ispower(d), m=max(m,d))); if(m==1, return(n)); n/=m)} \\ Andrew Howroyd, Aug 26 2018
Showing 1-3 of 3 results.