A062760 a(n) is n divided by the largest power of the squarefree kernel of n (A007947) which divides it.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 1, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7, 3, 1, 1, 1, 1, 4
Offset: 1
Keywords
Examples
n=1800: the squarefree kernel is 2*3*5 = 30 and 900 = 30^2 divides n, a(1800) = 2, the quotient of 1800/900.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local F,m,t; F:= ifactors(n)[2]; m:= min(seq(t[2],t=F)); mul(t[1]^(t[2]-m),t=F) end proc: map(f, [$1..200]); # Robert Israel, Nov 03 2017
-
Mathematica
{1}~Join~Table[n/#^IntegerExponent[n, #] &@ Last@ Select[Divisors@ n, SquareFreeQ], {n, 2, 104}] (* Michael De Vlieger, Nov 02 2017 *) a[n_] := Module[{f = FactorInteger[n], e}, e = Min[f[[;; , 2]]]; f[[;; , 2]] -= e; Times @@ Power @@@ f]; Array[a, 100] (* Amiram Eldar, Feb 12 2023 *)
-
PARI
A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014 A051904(n) = if(1==n,0,vecmin(factor(n)[, 2])); \\ After Charles R Greathouse IV's code A062760(n) = n/(A007947(n)^A051904(n)); \\ Antti Karttunen, Sep 23 2017
Formula
a(n) = n/A062759(n). - Amiram Eldar, Feb 12 2023
Comments