cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062762 Number of powerful numbers not exceeding 2^n.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 11, 18, 26, 38, 55, 80, 116, 166, 240, 345, 497, 710, 1016, 1453, 2073, 2955, 4211, 5992, 8523, 12111, 17202, 24423, 34648, 49152, 69694, 98795, 140009, 198378, 281016, 398002, 563612, 797999, 1129737, 1599166, 2263457, 3203381
Offset: 0

Views

Author

Labos Elemer, Jul 16 2001

Keywords

Comments

Number of terms x from A001694 for which x <= 2^n.

Examples

			Below 128, the 18 powerful numbers {1,4,8,9,16,25,...,100,108,121,125,128} can be found, so a(7)=18.
		

Crossrefs

Programs

  • Mathematica
    nn = 41; s = Union@ Flatten@ Table[a^2*b^3, {b, (2^nn)^(1/3)}, {a, Sqrt[(2^nn)/b^3]}]; Table[FirstPosition[s, 2^k][[1]], {k, 2, nn}] (* Michael De Vlieger, Oct 29 2023 *)
  • PARI
    a(n) = my(s=0,N=2^n); forsquarefree(k=1, sqrtnint(N, 3), s += sqrtint(N\k[1]^3)); s; \\ Daniel Suteu, Feb 18 2020
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A062762(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        m = 1<1:
            k2 = integer_nthroot(m//j**2,3)[0]+1
            w = squarefreepi(k2-1)
            c += j*(w-l)
            l, j = w, isqrt(m//k2**3)
        return c-l # Chai Wah Wu, Sep 13 2024

Formula

a(n) = Sum_{k=0..n} A062761(k). - Daniel Suteu, Feb 18 2020

Extensions

a(19)-a(41) from Donovan Johnson, Oct 01 2009