cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062769 Smallest number m such that the continued fraction expansion of sqrt(m) has period 2n + 1.

Original entry on oeis.org

2, 41, 13, 58, 106, 61, 193, 109, 157, 337, 181, 586, 457, 949, 821, 601, 613, 1061, 421, 541, 1117, 1153, 1249, 1069, 1021, 1201, 1669, 2381, 1453, 2137, 2053, 1801, 2293, 1381, 1549, 3733, 3541, 3217, 5857, 1621, 3169, 4657, 2689, 3049, 2389, 4057, 4549
Offset: 0

Views

Author

Lekraj Beedassy, Jul 17 2001

Keywords

Comments

If the continued fraction for sqrt(N) has period (2k + 1) and k-th convergent P(k)/Q(k) [taking P(-1)=1; Q(-1)=0 where necessary], then the i-th positive solution V(i) = [x(i),y(i)] to the Pell equation x^2 - N*y^2 = 1 satisfies the recurrence V(i+2) = 2*A*V(i+1) - V(i) starting with V(0)=(1,0); V(1) = (A,B) where A = 2*S^2 + 1; B = 2*S*T and S = P(k)*Q(k) + P(k-1)*Q(k-1); T = Q(k)^2 + Q(k-1)^2.

Examples

			For n = 2, 2n+1 = 5. a(2) = 13 and we indeed have sqrt(13) = [3; 1, 1, 1, 1, 6] with period 5, the first one in the sequence sqrt(29) = [5; 2, 1, 1, 2, 10], sqrt(53) = [7; 3, 1, 1, 3, 14], sqrt(74) = [8; 1, 1, 1, 1, 16], sqrt(85) = [9; 4, 1, 1, 4, 18], sqrt(89) = [9; 2, 3, 3, 2, 18], ...
		

Crossrefs

Programs

  • Mathematica
    nn = 50; t = Table[0, {nn}]; n = 1; found = 0; While[found < nn, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && (len + 1)/2 <= nn && t[[(len + 1)/2]] == 0, t[[(len + 1)/2]] = n; found++]]]; t (* T. D. Noe, Apr 04 2014 *)

Extensions

More terms from Naohiro Nomoto, Jan 01 2002