cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062775 Number of Pythagorean triples mod n: total number of solutions to x^2 + y^2 = z^2 mod n.

Original entry on oeis.org

1, 4, 9, 24, 25, 36, 49, 96, 99, 100, 121, 216, 169, 196, 225, 448, 289, 396, 361, 600, 441, 484, 529, 864, 725, 676, 891, 1176, 841, 900, 961, 1792, 1089, 1156, 1225, 2376, 1369, 1444, 1521, 2400, 1681, 1764, 1849, 2904, 2475, 2116, 2209, 4032, 2695, 2900
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 18 2001

Keywords

Comments

a(n) is multiplicative and, for a prime p, a(p) = p^2. Hence a(n) = n^2 if n is squarefree.

Crossrefs

Cf. A091143 (number of solutions to x^2 + y^2 = z^2 mod 2^n).
Number of solutions to x^k + y^k = z^k mod n: this sequence (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).

Programs

  • Maple
    A062775 := proc(n)
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if p = 2 then
                if type(e,'odd') then
                    a := a*p^((3*e+1)/2)*(2^((e+1)/2)-1) ;
                else
                    a := a*p^(3*e/2)*(2^(e/2+1)-1) ;
                end if;
            else
                if type(e,'odd') then
                    a := a*p^((3*e-1)/2)*(p^((e+1)/2)+p^((e-1)/2)-1) ;
                else
                    a := a*p^(3*e/2-1)*(p^(e/2+1)+p^(e/2)-1) ;
                end if;
            end if;
        end do:
        a ;
    end proc:
    seq(A062775(n),n=1..100) ; # R. J. Mathar, Jun 25 2018
  • Mathematica
    Table[cnt=0; Do[If[Mod[x^2+y^2-z^2, n]==0, cnt++ ], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}]
    f[p_, e_] := If[OddQ[e], p^(3*(e+1)/2 - 2)*(p^((e+1)/2) + p^((e-1)/2) - 1), p^(3*e/2 - 1) * (p^(e/2 + 1) + p^(e/2) - 1)]; f[2, e_] := If[OddQ[e], 2^(3*(e+1)/2 - 1)*(2^((e+1)/2) - 1), 2^(3*e/2)*(2^(e/2+1)-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 18 2022 *)

Formula

a(n) is multiplicative. For the powers of primes p, there are four cases. For p=2, there are cases for even and odd powers: a(2^(2k-1)) = 2^(3k-1) (2^k-1) and a(2^(2k)) = 2^(3k) (2^(k+1)-1). Similarly, for odd primes p, a(p^(2k-1)) = p^(3k-2) (p^k+p^(k-1)-1) and a(p^(2k)) = p^(3k-1) (p^(k+1)+p^k-1). - T. D. Noe, Dec 22 2003
From Gottfried Helms, May 13 2004: (Start)
If the canonical form of n is n = 2^i * 3^j * 5^k *... * p^q, then it appears that a(n) = n * f(2, i) * f(3, j) * f(5, k) * ... * f(p, q), where f(p, 1) = p for any prime p; f(2, i) = 2^i + 2^i - 2^ceiling(i/2); f(p, i) = p^i + p^(i-1) - p^floor((i-1)/2) for any odd prime p.
For example, a(7) = 49 because a(7) = 7*f(7, 1) = 7*7; a(16) = 448 because a(16) = a(2^4) = 16 * f(2, 4) = 16 * (16+16-4) = 16*28 = 448; a(12) = 216 because a(12) = a(3*2^2) = 12*f(2, 2)*f(3, 1) = 12*(4+4-2)*3 = 216. (End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16/45) * Product_{p prime} (1 + 1/(p^3 + p^2 + p)) = (16/45)*zeta(3)/zeta(4) = 0.39488943478263044166... . - Amiram Eldar, Oct 18 2022, Nov 30 2023

Extensions

More terms from Sascha Kurz, Mar 25 2002