cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062778 Values of Moebius-transform of PrimePi function.

Original entry on oeis.org

0, 1, 2, 1, 3, 0, 4, 2, 2, 0, 5, 1, 6, 1, 1, 2, 7, 2, 8, 3, 2, 2, 9, 2, 6, 2, 5, 2, 10, 3, 11, 5, 4, 3, 4, 2, 12, 3, 4, 2, 13, 3, 14, 5, 6, 4, 15, 4, 11, 5, 6, 5, 16, 4, 8, 5, 6, 5, 17, 2, 18, 6, 8, 7, 9, 4, 19, 7, 8, 6, 20, 5, 21, 8, 9, 8, 12, 6, 22, 8, 13, 8, 23, 6, 13, 8, 11, 7, 24, 4, 14, 9, 11, 8
Offset: 1

Views

Author

Labos Elemer, Jul 18 2001

Keywords

Examples

			n=12, divisors = D(12) = {1,2,3,4,6,12}, pi(12/divisors) = {5,3,2,2,1,0}, mu(divisors) = {1,-1,-1,0,1,0}, Sum = 5*1 - 3*1 - 2*1 + 0 + 1*1 + 0 = 1, thus a(12)=1; for p=prime(n), pi(p/divisor) = {n,0}, mu({1,p})={1,-1}, Sum = 1*n + 0 = n, so a(prime(n)) = n.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors@n}, Plus @@ (MoebiusMu /@ (n/d)*PrimePi /@ d)]; Array[f, 94] (* Robert G. Wilson v, Dec 07 2005 *)
  • PARI
    { for (n=1, 1000, d=divisors(n); write("b062778.txt", n, " ", sum(k=1, length(d), primepi(n/d[k]) * moebius(d[k]))) ) } \\ Harry J. Smith, Aug 10 2009
    
  • PARI
    a(n) = sumdiv(n, d, primepi(d)*moebius(n/d)); \\ Michel Marcus, Nov 05 2018

Formula

a(n) = Sum_{d|n} pi(n/d)*mu(d).