A062778 Values of Moebius-transform of PrimePi function.
0, 1, 2, 1, 3, 0, 4, 2, 2, 0, 5, 1, 6, 1, 1, 2, 7, 2, 8, 3, 2, 2, 9, 2, 6, 2, 5, 2, 10, 3, 11, 5, 4, 3, 4, 2, 12, 3, 4, 2, 13, 3, 14, 5, 6, 4, 15, 4, 11, 5, 6, 5, 16, 4, 8, 5, 6, 5, 17, 2, 18, 6, 8, 7, 9, 4, 19, 7, 8, 6, 20, 5, 21, 8, 9, 8, 12, 6, 22, 8, 13, 8, 23, 6, 13, 8, 11, 7, 24, 4, 14, 9, 11, 8
Offset: 1
Keywords
Examples
n=12, divisors = D(12) = {1,2,3,4,6,12}, pi(12/divisors) = {5,3,2,2,1,0}, mu(divisors) = {1,-1,-1,0,1,0}, Sum = 5*1 - 3*1 - 2*1 + 0 + 1*1 + 0 = 1, thus a(12)=1; for p=prime(n), pi(p/divisor) = {n,0}, mu({1,p})={1,-1}, Sum = 1*n + 0 = n, so a(prime(n)) = n.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_] := Block[{d = Divisors@n}, Plus @@ (MoebiusMu /@ (n/d)*PrimePi /@ d)]; Array[f, 94] (* Robert G. Wilson v, Dec 07 2005 *)
-
PARI
{ for (n=1, 1000, d=divisors(n); write("b062778.txt", n, " ", sum(k=1, length(d), primepi(n/d[k]) * moebius(d[k]))) ) } \\ Harry J. Smith, Aug 10 2009
-
PARI
a(n) = sumdiv(n, d, primepi(d)*moebius(n/d)); \\ Michel Marcus, Nov 05 2018
Formula
a(n) = Sum_{d|n} pi(n/d)*mu(d).