cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062796 Inverse Moebius transform of f(n) = n^n (A000312).

Original entry on oeis.org

1, 5, 28, 261, 3126, 46688, 823544, 16777477, 387420517, 10000003130, 285311670612, 8916100495200, 302875106592254, 11112006826381564, 437893890380862528, 18446744073726329093, 827240261886336764178, 39346408075296925042601, 1978419655660313589123980
Offset: 1

Views

Author

Labos Elemer, Jul 19 2001

Keywords

Examples

			n=6: divisors = {1,2,3,6}; 1^1 + 2^2 + 3^3 + 6^6 = 1 + 4 + 27 + 46656 = 46688 = a(6).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^# &]; Array[a, 19] (* Jean-François Alcover, Dec 23 2015 *)
  • PARI
    vector(17, n, sumdiv(n, d, d^d))
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,m^m*x^m/(1-x^m +x*O(x^n))),n)} \\ Paul D. Hanna, Oct 27 2009
    
  • PARI
    a(n) = sumdiv(n,d, d^d ); \\ Joerg Arndt, Apr 14 2013
    
  • Python
    from sympy import divisors
    def A062796(n): return sum(d**d for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022

Formula

a(n) = Sum_{d|n} d^d.
G.f.: Sum_{n>=1} n^n * x^n/(1 - x^n). - Paul D. Hanna, Oct 27 2009
Logarithmic derivative of A023879. - Paul D. Hanna, Sep 05 2012