A062813 a(n) = Sum_{i=0..n-1} i*n^i.
0, 2, 21, 228, 2930, 44790, 800667, 16434824, 381367044, 9876543210, 282458553905, 8842413667692, 300771807240918, 11046255305880158, 435659737878916215, 18364758544493064720, 824008854613343261192, 39210261334551566857170, 1972313422155189164466189, 104567135734072022160664820
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..400
- Chai Wah Wu, Pandigital and penholodigital numbers, arXiv:2403.20304 [math.GM], 2024. See p. 1.
Crossrefs
Programs
-
Haskell
a062813 n = foldr (\dig val -> val * n + dig) 0 [0 .. n - 1] -- Reinhard Zumkeller, Aug 29 2014
-
Maple
0,seq(n*((n-2)*n^n + 1)/(n-1)^2,n=2..100); # Robert Israel, Sep 03 2014
-
Mathematica
Table[Sum[i*n^i, {i, 0, -1 + n}], {n, 17}] (* Olivier Gérard, Jun 23 2001 *) a[n_] := FromDigits[ Range[ n-1, 0, -1], n]; Array[a, 18] (* Robert G. Wilson v, Sep 03 2014 *)
-
PARI
a(n) = sum(i=0,n-1,i*n^i)
-
PARI
a(n) = if (n==1,0, my(t=n^n); t-(t-n)/(n-1)^2); \\ Joerg Arndt, Sep 03 2014
-
Python
def A062813(n): return (m:=n**n)-(m-n)//(n-1)**2 if n>1 else 0 # Chai Wah Wu, Mar 18 2024
Formula
a(n) = n^n - (n^n-n)/(n-1)^2 for n>1. - Dean Hickerson, Jun 26 2001
Comments