A062835 a(1) = 0; for n > 1 a(n) = sum of divisors of n^2-1; or sigma(A005563(n-1)).
0, 4, 15, 24, 60, 48, 124, 104, 186, 156, 360, 168, 480, 336, 504, 432, 819, 360, 1170, 640, 1080, 768, 1488, 744, 1736, 1240, 1680, 1200, 2880, 960, 3048, 1536, 2286, 2304, 3510, 1824, 3900, 2128, 3720, 2352, 5952, 1848, 5760, 3432, 4320, 3744, 6048
Offset: 1
Links
- Metin Sariyar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
Programs
-
GAP
Concatenation([0], List([2..100], n-> Sigma(n^2 -1) )); # G. C. Greubel, Dec 31 2019
-
Magma
[0] cat [DivisorSigma(1, n^2 -1): n in [2..100]]; // G. C. Greubel, Dec 31 2019
-
Maple
with(numtheory): seq( `if`(n=1, 0, sigma(n^2 -1)), n=1..100); # G. C. Greubel, Dec 31 2019
-
Mathematica
Table[If[n==1,0,DivisorSigma[1, n^2 - 1]], {n, 120}] (* corrected by Metin Sariyar, Dec 12 2019 *)
-
PARI
a(n)={if(n<2, 0, sigma(n^2 - 1))}
-
Sage
[0]+[sigma(n^2 -1, 1) for n in (2..100)] # G. C. Greubel, Dec 31 2019
Formula
Sum_{k=1..n} a(k) = (35/48) * n^3 + O((n*log(n))^2). - Amiram Eldar, Dec 09 2024
Extensions
Name corrected by Omar E. Pol, Dec 08 2019