cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A234645 Sum of the divisors of n^3+1.

Original entry on oeis.org

1, 3, 13, 56, 84, 312, 256, 660, 800, 1332, 1344, 3458, 2240, 3792, 4836, 6572, 4356, 13440, 6160, 16800, 13312, 15192, 11136, 35685, 19840, 25284, 30976, 42560, 22740, 63648, 30464, 71820, 51792, 65664, 53952, 111440, 52136, 84480, 99008, 133560, 75264
Offset: 0

Views

Author

Vincenzo Librandi, Jan 01 2014

Keywords

Examples

			a(4) = 84 because 4^3+1 = 65 and the sum of the 4 divisors {1, 5, 13, 65} is 84.
		

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n^3+1): n in [0..50]];
    
  • Mathematica
    Table[Total[Divisors[n^3 + 1]], {n, 0, 50}]
    DivisorSigma[1,Range[0,40]^3+1] (* Harvey P. Dale, Jul 27 2021 *)
  • PARI
    a(n) = sigma(n^3+1); \\ Michel Marcus, Jun 19 2015

Formula

a(n) = A000203(A001093(n)). - Michel Marcus, Jun 19 2015
Sum_{k=1..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (83/288) * Product_{primes p == 1 (mod 3)} ((p^2+2)/(p^2-1)) * Product_{primes p == 2 (mod 3)} (p^2/(p^2-1)) = 0.449926279... . - Amiram Eldar, Dec 09 2024

A234860 Sum of the divisors of n^3 - 1.

Original entry on oeis.org

8, 42, 104, 224, 264, 780, 592, 1680, 1520, 2880, 1896, 5642, 2968, 5808, 8736, 9548, 7200, 15360, 8440, 19488, 19032, 23040, 14448, 49920, 23560, 31836, 32912, 53312, 34200, 77688, 38912, 70812, 62088, 74088, 67584, 152320, 56392, 107520, 99736
Offset: 2

Views

Author

Vincenzo Librandi, Jan 01 2014

Keywords

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n^3-1): n in [2..50]];
    
  • Mathematica
    Table[Total[Divisors[n^3 - 1]], {n, 2, 50}]
  • PARI
    a(n) = sigma(n^3-1); \\ Amiram Eldar, Dec 09 2024

Formula

From Amiram Eldar, Dec 09 2024: (Start)
a(n) = A000203(A068601(n)).
Sum_{k=2..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (83/288) * Product_{primes p == 1 (mod 3)} ((p^2+2)/(p^2-1)) * Product_{primes p == 2 (mod 3)} (p^2/(p^2-1)) = 0.4499262799... . (End)

Extensions

Offset corrected by Amiram Eldar, Dec 09 2024

A234861 Sum of the distinct prime divisors of n^3 - 1.

Original entry on oeis.org

0, 7, 15, 10, 33, 48, 24, 80, 22, 40, 33, 168, 66, 224, 250, 28, 309, 24, 132, 440, 470, 23, 99, 624, 43, 61, 772, 274, 89, 55, 341, 189, 1125, 411, 129, 86, 79, 1520, 251, 563, 1730, 193, 643, 333, 141, 118, 123, 241, 67, 2558, 393, 939, 431, 3024, 97, 150
Offset: 1

Views

Author

Vincenzo Librandi, Jan 01 2014

Keywords

Examples

			a(3) = 15 because 3^3-1 = 26 and the sum of the 2 distinct prime divisors {2, 13} is 15.
		

Crossrefs

Cf. A062835.

Programs

  • Mathematica
    Table[Total[Transpose[FactorInteger[n^3 - 1]][[1]]], {n, 50}]
Showing 1-3 of 3 results.