A062854 First differences of A027424.
1, 2, 3, 3, 5, 4, 7, 5, 6, 6, 11, 6, 13, 8, 9, 8, 17, 9, 19, 10, 12, 12, 23, 10, 16, 14, 15, 13, 29, 12, 31, 15, 18, 18, 20, 13, 37, 20, 21, 16, 41, 17, 43, 20, 21, 24, 47, 17, 31, 22, 27, 23, 53, 22, 31, 22, 30, 30, 59, 19, 61, 32, 28, 26, 36, 26, 67, 30, 36, 26, 71, 23, 73, 38
Offset: 1
Keywords
Examples
a(4)=3 because there are 9 unique products in the 4 X 4 multiplication table (1 2 3 4 6 8 9 12 16), which is 3 more than the 6 unique products in the 3 X 3 multiplication table (1 2 3 4 6 9).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Programs
-
Maple
A062854 := proc(n) A027424(n)-A027424(n-1) ; end proc: seq(A062854(n),n=1..40) ; # R. J. Mathar, Oct 02 2020
-
Mathematica
Prepend[Differences@ #, First@ #] &@ Module[{ u = {}}, Table[Length[u = Union[u, n Range@ n]], {n, 100}]] (* Michael De Vlieger, Jan 30 2017 *)
-
PARI
b(n) = #setbinop((x, y)->x*y, vector(n, i, i); ); a(n) = b(n) - b(n-1); \\ Michel Marcus, Jan 28 2017
-
Python
from itertools import takewhile from sympy import divisors def A062854(n): return sum(1 for i in range(1,n+1) if all(d<=i for d in takewhile(lambda d:d
Chai Wah Wu, Oct 13 2023
Extensions
More terms from Ralf Stephan, Jun 02 2005
Comments