A062867 Triangle read by rows: entries give numbers of permutations of [1..n] by absolute barycenter.
1, 1, 2, 4, 2, 14, 8, 2, 46, 62, 10, 2, 282, 292, 132, 12, 2, 1394, 2578, 784, 268, 14, 2, 12658, 15472, 9718, 1920, 534, 16, 2, 83122, 171662, 69318, 33230, 4470, 1058, 18, 2, 985730, 1282604, 964544, 276044, 107660, 10100, 2096, 20, 2, 8012962, 17465978, 8199268, 4851200, 1022824, 337988, 22396, 4160, 22, 2
Offset: 0
Examples
[1], [2], [4, 2], [14, 8, 2], [46, 62, 10, 2], [282, 292, 132, 12, 2], ... (1,6,2,3,4,5,7) has difference (0,5,-1,-1,-1,-1,0) and signs (0,1,-1,-1,-1,-1,0) with total -3, absolute value is 3. This is one of 268 such permutations of degree 7. Triangle T(n,k) begins: 1; 1; 2; 4, 2; 14, 8, 2; 46, 62, 10, 2; 282, 292, 132, 12, 2; 1394, 2578, 784, 268, 14, 2; 12658, 15472, 9718, 1920, 534, 16, 2; 83122, 171662, 69318, 33230, 4470, 1058, 18, 2; 985730, 1282604, 964544, 276044, 107660, 10100, 2096, 20, 2;
Links
- Alois P. Heinz, Rows n = 0..20, flattened
Programs
-
Maple
b:= proc(s, t) option remember; (n-> `if`(n=0, x^t, add(b(s minus {j}, t+signum(n-j)), j=s)))(nops(s)) end: T:= n-> (p-> seq(coeff(p, x, i)*`if`(i=0, 1, 2), i=0..degree(p)))(b({$1..n}, 0)): seq(T(n), n=0..12); # Alois P. Heinz, Jul 31 2018
-
Mathematica
b[s_, t_] := b[s, t] = With[{n = Length[s]}, If[n == 0, x^t, Sum[b[s ~Complement~ {j}, t + Sign[n - j]], {j, s}]]]; T[n_] := With[{p = b[Range[n], 0]}, Table[Coefficient[p, x, i]*If[i == 0, 1, 2], {i, 0, Exponent[p, x]}]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 25 2021, after Alois P. Heinz *)
Formula
T(n,0) = A062868(n) = A062866(n,0), T(n,k) = 2 * A062866(n,k) for k>0. - Alois P. Heinz, Jul 31 2018
Extensions
More terms from Vladeta Jovovic, Jun 29 2001
Comments