A062877 0 and numbers representable as a sum of distinct odd-indexed Fibonacci numbers.
0, 1, 2, 3, 5, 6, 7, 8, 13, 14, 15, 16, 18, 19, 20, 21, 34, 35, 36, 37, 39, 40, 41, 42, 47, 48, 49, 50, 52, 53, 54, 55, 89, 90, 91, 92, 94, 95, 96, 97, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 125, 126, 128, 129, 130, 131, 136, 137, 138, 139, 141, 142, 143, 144
Offset: 0
Keywords
Examples
F_1 = 1, F_3 = 2, F_1 + F_3 = 3, F_5 = 5, F_5 + F_1 = 6, F_5 + F_3 = 7, F_5 + F_3 + F_1 = 8, F_7 = 13, ...
Links
- R. J. Mathar, Table of n, a(n) for n = 0..3071
- A. Karttunen, On Pascal's Triangle Modulo 2 in Fibonacci Representation, The Fibonacci Quarterly, Vol. 42, #1 (2004) pp. 38-46.
Crossrefs
Programs
-
Maple
with(combinat); [seq(A062877(j),j=0..265)]; A062877 := n -> add((floor(n/(2^i)) mod 2)*fibonacci((2*i)+1),i=0..floor_log_2(n+1)); floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end; # alternative isA062877 := proc(n) local fset,fidx,ps ; if n = 0 then return true; end if; fset := {} ; for fidx from 1 by 2 do if combinat[fibonacci](fidx) >n then break; end if; fset := fset union {combinat[fibonacci](fidx)} ; end do: for ps in combinat[powerset](fset) do if n = add(fidx,fidx=ps) then return true; end if; end do: return false; end proc: # R. J. Mathar, Aug 22 2016
-
Mathematica
Take[Union[Total/@Subsets[Fibonacci[Range[1,20,2]]]],70](* Harvey P. Dale, Dec 21 2013 *)
-
PARI
my(m=Mod('x,'x^2-3*'x+1)); a(n) = subst(lift(subst(Pol(binary(n)), 'x,m)), 'x,2); \\ Kevin Ryde, Nov 25 2020