A062936 Numbers n such that n*R(n) is a palindrome, where R(n) (A004086) = digit reversal.
1, 2, 3, 11, 12, 21, 22, 101, 102, 111, 112, 121, 122, 201, 202, 211, 212, 221, 1001, 1002, 1011, 1012, 1021, 1022, 1101, 1102, 1111, 1112, 1121, 1201, 1202, 1211, 2001, 2002, 2011, 2012, 2021, 2101, 2102, 2111, 2201, 10001, 10002, 10011, 10012
Offset: 1
Examples
122*221 = 26962 hence 122 belongs to the sequence.
Links
- Harry J. Smith and Indranil Ghosh, Table of n, a(n) for n = 1..4357 (first 500 terms from Harry J. Smith)
- Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, On Polynomial Pairs of Integers, arXiv:1210.7593 [math.NT], 2012. - From _N. J. A. Sloane_, Nov 08 2012
- Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, On Polynomial Pairs of Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.5.
Programs
-
Mathematica
Select[Range[100000], Reverse[IntegerDigits[ #*FromDigits[Reverse[IntegerDigits[ # ]]]]] == IntegerDigits[ #*FromDigits[Reverse[IntegerDigits[ # ]]]] &] (* Tanya Khovanova, Jun 17 2009 *) Select[Range[11000],PalindromeQ[# IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 21 2020 *)
-
PARI
lista(nn) = for(n=1, nn, my(d=digits(n*eval(concat(Vecrev(Str(n)))), 10)); if(d == Vecrev(d), print1(n, ", "))); \\ Altug Alkan, Mar 26 2016
-
Python
A062936_list = [] for n in range(1,10**5): s = str(n*int(str(n)[::-1])) if s == s[::-1]: A062936_list.append(n) # Chai Wah Wu, Sep 08 2014
Formula
Includes integers not ending in 0 with sum of squares of digits < 10. - David W. Wilson, Jul 06 2001
Extensions
Corrected and extended by Dean Hickerson and Patrick De Geest, Jul 06 2001