cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062949 Multiplicative with a(p^e) = ((e+1)*p^(e+1)-(e+2)*p^e+1)/(p-1).

Original entry on oeis.org

1, 3, 5, 9, 9, 15, 13, 25, 23, 27, 21, 45, 25, 39, 45, 65, 33, 69, 37, 81, 65, 63, 45, 125, 69, 75, 95, 117, 57, 135, 61, 161, 105, 99, 117, 207, 73, 111, 125, 225, 81, 195, 85, 189, 207, 135, 93, 325, 139, 207, 165, 225, 105, 285, 189, 325, 185, 171, 117, 405
Offset: 1

Views

Author

Vladeta Jovovic, Jul 21 2001

Keywords

Comments

Inverse Mobius transform of A062355.

Crossrefs

Programs

  • Maple
    A062949 := proc(n) add(numtheory[phi](d)*numtheory[tau](d), d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Feb 09 2011
  • Mathematica
    f[p_, e_] := ((e+1)*p^(e+1)-(e+2)*p^e+1)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 60] (* Amiram Eldar, Jul 31 2019 *)

Formula

a(n) = Sum_{d|n} phi(d)*tau(d).
a(n) = Sum_{k=1..n} tau(n/gcd(n, k)).
a(n) = Sum_{d|n} d*uphi(n/d), where uphi() = A047994(). - Vladeta Jovovic, Mar 16 2004