A070159 Numbers k such that phi(k)/(sigma(k)-k) is an integer.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 133, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1
Keywords
Examples
The prime p=47 is in this sequence since phi[p]/(sigma[p]-p) = p-1 is an integer, as is the case for any other prime. The composite n=403=13*31 is in this sequence, since the ratio phi(n)/(sigma[n]-n) =360/(1+13+31)=8 is an integer. The first few composites in this sequence are 133,403,583,713,... (A055940).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Douglas E. Iannucci, On the Equation sigma(n) = n + phi(n), Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.2.
Programs
-
Mathematica
Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n); If[IntegerQ[s], Print[n]], {n, 2, 1000}] Select[Range[2,300],IntegerQ[EulerPhi[#]/(DivisorSigma[1,#]-#)]&] (* Harvey P. Dale, Dec 25 2019 *)
-
PARI
for(n=2,999,eulerphi(n)%(sigma(n)-n) || print1(n",")) \\ M. F. Hasler, Dec 11 2007
Formula
Extensions
Edited by M. F. Hasler, Dec 11 2007
Comments