A063005 Difference between 2^n and the next smaller or equal power of 3.
0, 1, 1, 5, 7, 5, 37, 47, 13, 269, 295, 1319, 1909, 1631, 9823, 13085, 6487, 72023, 84997, 347141, 517135, 502829, 2599981, 3605639, 2428309, 19205525, 24062143, 5077565, 139295293, 149450423, 686321335, 985222181, 808182895, 5103150191, 6719515981, 2978678759
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3324
Programs
-
Maple
a:= n-> (t-> t-3^ilog[3](t))(2^n): seq(a(n), n=0..40); # Alois P. Heinz, Oct 11 2019
-
Mathematica
a[n_] := 2^n - 3^Floor[Log[3, 2] * n]; Array[a, 36, 0] (* Amiram Eldar, Nov 19 2021 *)
-
PARI
for(n=0,50,print1(2^n-3^floor(log(2^n)/log(3))","))
-
Python
def a(n): m, p, target = 0, 1, 2**n while p <= target: m += 1; p *= 3 return target - 3**(m-1) print([a(n) for n in range(36)]) # Michael S. Branicky, Nov 19 2021
Formula
a(n) = 2^n - 3^(floor (log_3 (2^n))).
Extensions
More terms from Ralf Stephan, Mar 20 2003
Comments