cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063008 Canonical partition sequence (see A080577) encoded by prime factorization. The partition [p1,p2,p3,...] with p1 >= p2 >= p3 >= ... is encoded as 2^p1 * 3^p2 * 5^p3 * ... .

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 240, 216, 360, 840, 900, 1260, 4620, 30030, 128, 192, 288, 480, 432, 720, 1680, 1080, 1800, 2520, 9240, 6300, 13860, 60060, 510510, 256, 384, 576, 960, 864, 1440, 3360
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 02 2001

Keywords

Comments

Partitions are ordered first by sum. Then all partitions of n are viewed as exponent tuples on n variables and their corresponding monomials are ordered reverse lexicographically. This gives a canonical ordering: [] [1] [2,0] [1,1] [3,0,0] [2,1,0] [1,1,1] [4,0,0,0] [3,1,0,0] [2,2,0,0] [2,1,1,0] [1,1,1,1]... Rearrangement of A025487, A036035 etc.
Or, least integer of each prime signature; resorted in accordance with the integer partitions described in A080577. - Alford Arnold, Feb 13 2008

Examples

			Partition [2,1,1,1] for n=5 gives 2^2*3*5*7 = 420.
The sequence begins:
   1;
   2;
   4,  6;
   8, 12,  30;
  16, 24,  36,  60, 210;
  32, 48,  72, 120, 180, 420, 2310;
  64, 96, 144, 240, 216, 360,  840, 900, 1260, 4620, 30030;
  ...
		

Crossrefs

Cf. A001222 (bigomega), A025487, A059901.
See A080576 Maple (graded reflected lexicographic) ordering.
See A080577 Mathematica (graded reverse lexicographic) ordering.
See A036036 "Abramowitz and Stegun" (graded reflected colexicographic) ordering.
See A036037 for graded colexicographic ordering.

Programs

  • Maple
    with(combinat): A063008_row := proc(n) local e,w,r;
    r := proc(L) local B,i; B := NULL;
    for i from nops(L) by -1 to 1 do
    B := B,L[i] od; [%] end:
    w := proc(e) local i, m, p, P; m := infinity;
    P := permute([seq(ithprime(i),i=1..nops(e))]);
    for p in P do m := min(m,mul(p[i]^e[i],i=1..nops(e))) od end:
    [seq(w(e), e = r(partition(n)))] end:
    seq(print(A063008_row(i)),i=0..6); # Peter Luschny, Jan 23 2011
    # second Maple program:
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> mul(ithprime(i)^x[i], i=1..nops(x)), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Sep 03 2019
  • Mathematica
    row[n_] := Product[ Prime[k]^#[[k]], {k, 1, Length[#]}]& /@ IntegerPartitions[n]; Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 10 2012 *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]},Join[ Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
    T[n_] := Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n];
    T /@ Range[0, 9] // Flatten (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)

Formula

bigomega(T(n,k)) = n. - Andrew Howroyd, Mar 28 2020

Extensions

Partially edited by N. J. A. Sloane, May 15, at the suggestion of R. J. Mathar
Corrected and (minor) edited by Daniel Forgues, Jan 03 2011