cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063021 Reversion of y - y^2 - y^5.

Original entry on oeis.org

0, 1, 1, 2, 5, 15, 49, 168, 594, 2150, 7931, 29718, 112814, 432957, 1677050, 6547856, 25742454, 101819100, 404885630, 1617725010, 6491294600, 26147434885, 105691660110, 428578242900, 1742925259725, 7106942278683, 29050303230234, 119014903102956, 488610373729868
Offset: 0

Views

Author

Olivier Gérard, Jul 05 2001

Keywords

Programs

  • Maple
    A063021 := proc(n)
        add(binomial(n-1-3*j,j)*binomial(2*n-3*j-2,n-1)/n,j=0..(n-1)/3) ;
    end proc:
    seq(A063021(n),n=0..60) ; # R. J. Mathar, Jul 23 2023
  • Mathematica
    CoefficientList[InverseSeries[Series[y - y^2 - y^5, {y, 0, 30}], x], x]
  • Maxima
    a(n):=sum(binomial(n-1-3*j,j)*binomial(2*n-3*j-2,n-1),j,0,(n-1)/3)/n; /* Vladimir Kruchinin, May 24 2011 */
    
  • PARI
    Vec(serreverse(x-x^2-x^5+O(x^66))) /* Joerg Arndt, May 24 2011 */

Formula

a(n) = Sum_{j=0..(n-1)/3} C(n-1-3*j,j)*C(2*n-3*j-2,n-1)/n, n>0, a(0)=0. - Vladimir Kruchinin, May 24 2011
D-finite with recurrence +18378869*n*(n-1)*(n-2)*(n-3)*a(n) -2*(n-1)*(n-2)*(n-3)*(45648297*n -34126858)*a(n-1) +10*(n-2)*(n-3)*(2024320*n^2 +38560275*n -118224988)*a(n-2) +1500*(n-3)*(133915*n^3 -1577680*n^2 +6193631*n -8109122)*a(n-3) +5*(-52401875*n^4 +711510000*n^3 -3716005375*n^2 +8966267250*n -8515940832)*a(n-4) -250*(5*n-26)*(173375*n^3 -2045825*n^2 +7891985*n -9883503)*a(n-5) +131250*(5*n-27)*(5*n-31) *(5*n-24)*(5*n-28)*a(n-6)=0. - R. J. Mathar, Jul 23 2023