cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A369102 Expansion of (1/x) * Series_Reversion( x * ((1-x)^4-x^4) ).

Original entry on oeis.org

1, 4, 26, 204, 1772, 16408, 158752, 1585968, 16235472, 169423232, 1795611168, 19275231872, 209140483328, 2289981517312, 25271472702464, 280795784911616, 3138701648319744, 35270318924758016, 398215386792574464, 4515067063939210240, 51388662166213954560
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^4-x^4))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(5*n+3, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(5*n+3,n-4*k).

A369161 Expansion of (1/x) * Series_Reversion( x * ((1-x)^3-x^4) ).

Original entry on oeis.org

1, 3, 15, 91, 613, 4410, 33190, 258129, 2058281, 16737259, 138268611, 1157197639, 9790774861, 83606543660, 719638883748, 6237175439640, 54386540912490, 476782443732437, 4199713449255749, 37151346765537606, 329914740292813170, 2939975733035070000
Offset: 0

Views

Author

Seiichi Manyama, Jan 15 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3-x^4))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(4*n-k+2, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(4*n-k+2,n-4*k).

A365268 G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + x^3*A(x)^2).

Original entry on oeis.org

1, 1, 2, 5, 15, 48, 160, 549, 1929, 6909, 25134, 92612, 344924, 1296376, 4910656, 18728645, 71857133, 277160183, 1074085446, 4180057725, 16329796959, 64014638564, 251734985808, 992788252700, 3925688845948, 15560762343388, 61818928594952
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*n-4*k+1, n-3*k)/(2*n-4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*n-4*k+1,n-3*k)/(2*n-4*k+1).

A367317 Expansion of (1/x) * Series_Reversion( x * (1-x-x^4/(1-x)) ).

Original entry on oeis.org

1, 1, 2, 5, 15, 50, 177, 649, 2436, 9307, 36080, 141610, 561732, 2248709, 9073415, 36863549, 150676275, 619169360, 2556446520, 10600160707, 44121921044, 184291848864, 772204252280, 3244999395406, 13672564904027, 57749354647408, 244469827514066
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^4/(1-x)))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(2*n-2*k, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(2*n-2*k,n-4*k).

A367414 Expansion of (1/x) * Series_Reversion( x * (1-x-x^4/(1-x)^2) ).

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 187, 715, 2800, 11138, 44846, 182476, 749566, 3105575, 12966165, 54505650, 230508612, 980045835, 4186600220, 17960356014, 77343359518, 334217730014, 1448771849516, 6298222363395, 27452466169243, 119949953637406, 525284132440963
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^4/(1-x)^2))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(2*n-k, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(2*n-k,n-4*k).

A368932 Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x-x^4) ).

Original entry on oeis.org

1, 2, 7, 30, 144, 741, 3996, 22287, 127495, 743941, 4410555, 26492349, 160875186, 986007700, 6091548256, 37894543413, 237168491610, 1492323419929, 9434943086870, 59906035386393, 381832957589226, 2442251022673595, 15670578495195870
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(3*n-3*k+1, n-4*k))/(n+1);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x-x^4))/x)

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(3*n-3*k+1,n-4*k).

A369160 Expansion of (1/x) * Series_Reversion( x * ((1-x)^2-x^4) ).

Original entry on oeis.org

1, 2, 7, 30, 144, 742, 4012, 22458, 129035, 756602, 4509141, 27233726, 166320987, 1025356360, 6372494608, 39882831334, 251146002084, 1590079213920, 10115878798130, 64634124182670, 414578955678690, 2668578654593970, 17232252926468640, 111602332042716450
Offset: 0

Views

Author

Seiichi Manyama, Jan 15 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^2-x^4))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(3*n-2*k+1, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(3*n-2*k+1,n-4*k).

A367415 Expansion of (1/x) * Series_Reversion( x * (1-x-x^4/(1-x)^3) ).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 198, 793, 3255, 13529, 56696, 239340, 1017900, 4361840, 18828606, 81833505, 357865215, 1573549667, 6952392450, 30848928525, 137403484655, 614104910096, 2753200345000, 12378494389660, 55799811151140, 252141767612812, 1141894552992368
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^4/(1-x)^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(2*n, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(2*n,n-4*k).

A383480 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(4,0),(0,1).

Original entry on oeis.org

1, 2, 6, 20, 75, 294, 1176, 4752, 19350, 79310, 326898, 1353768, 5628441, 23478700, 98217840, 411879264, 1730924700, 7287941340, 30736775190, 129825892000, 549096132585, 2325216522420, 9857299586700, 41830206233400, 177673556967075, 755307883986084, 3213402383779812
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2025

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(x,y) option remember;
         local t;
         t:= 0;
         if x >= 1 then t:= t + procname(x-1,y) fi;
         if x >= 4 then t:= t + procname(x-4,y) fi;
         if y >= 1 then t:= t + procname(x,y-1) fi;
         t
    end proc:
    f(0,0):= 1:
    seq(f(n,n),n=0..26); # Robert Israel, May 28 2025
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(2*n-3*k, n-4*k));

Formula

a(n) = [x^n] 1/(1 - x - x^4)^(n+1).
a(n) = (n+1) * A063021(n+1).
a(n) = Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(2*n-3*k,n-4*k).

A383481 Coefficient of x^n in the expansion of 1 / (1-x-x^4)^n.

Original entry on oeis.org

1, 1, 3, 10, 39, 156, 630, 2556, 10431, 42823, 176748, 732810, 3049722, 12732188, 53299284, 223645200, 940355391, 3961092906, 16712516565, 70615352330, 298761296064, 1265504676810, 5366250376710, 22777466596560, 96768003904650, 411451657313931, 1750809473690436, 7455339422353396
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2025

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(binomial(n+k-1,k)*binomial(2*n-3*k-1,n-4*k),k=0..n/4) end proc:
    map(f, [$0..40]);  # Robert Israel, May 28 2025
  • PARI
    a(n, s=4, t=1, u=0) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n+k-1,k) * binomial(2*n-3*k-1,n-4*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^4) ).
Showing 1-10 of 12 results. Next