cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A063030 Reversion of y - y^2 - y^4 + y^5.

Original entry on oeis.org

0, 1, 1, 2, 6, 19, 63, 220, 795, 2942, 11099, 42536, 165126, 647955, 2565946, 10241616, 41158598, 166402323, 676338003, 2761988994, 11327162406, 46631572295, 192638451780, 798316442580, 3317866307145, 13825837134096
Offset: 0

Views

Author

Olivier Gérard, Jul 05 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[y - y^2 - y^4 + y^5, {y, 0, 30}], x], x]
  • PARI
    a(n)=if(n<1,0,polcoeff(serreverse(x-x^2-x^4+x^5+x*O(x^n)),n))

Formula

D-finite with recurrence 1458*n*(n-1)*(n-2)*(2*n-1) *(981649511*n -2631216939)*a(n) -486*(n-1)*(n-2) *(24210415932*n^3 -114067288649*n^2 +155533650884*n -64732315335)*a(n-1) +54*(n-2) *(39787015892*n^4 -313539301751*n^3 +992577496688*n^2 -1613867842189*n +1173502139880)*a(n-2) +(-27607572942679*n^5 +295135536608825*n^4 -1205223186688595*n^3 +2314131935158975*n^2 -2033367943220766*n +619177732684560)*a(n-3) -5*(5*n-21) *(5408009*n +1144402484)*(5*n-19) *(5*n-18)*(5*n-17) *a(n-4)=0. - R. J. Mathar, Mar 21 2022
a(n+1) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,n) * binomial(2*n-3*k,n). - Seiichi Manyama, Sep 26 2023

A366024 Expansion of (1/x) * Series_Reversion( x*(1-x)*(1+x^5) ).

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 125, 393, 1265, 4147, 13799, 46488, 158261, 543610, 1881730, 6557818, 22990323, 81026013, 286915275, 1020294605, 3642192301, 13047053600, 46885795710, 168979132425, 610640337099, 2212116899436, 8031940264223, 29224761233788
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[x(1-x)(1+x^5),{x,0,28}],x]/x,x]  (* Stefano Spezia, Sep 26 2023 *)
  • PARI
    a(n) = sum(k=0, n\5, (-1)^k*binomial(n+k, n)*binomial(2*n-5*k, n))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+k,n) * binomial(2*n-5*k,n).

A366023 Expansion of (1/x) * Series_Reversion( x*(1-x)*(1+x^4) ).

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 104, 309, 940, 2915, 9184, 29328, 94747, 309180, 1017824, 3376693, 11279274, 37906330, 128085630, 434913555, 1483226921, 5078436800, 17450556480, 60159492600, 208013078910, 721205983737, 2506764055592, 8733076109732, 30489081691750
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[x(1-x)(1+x^4),{x,0,29}],x]/x,x]  (* Stefano Spezia, Sep 26 2023 *)
  • PARI
    a(n) = sum(k=0, n\4, (-1)^k*binomial(n+k, n)*binomial(2*n-4*k, n))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} (-1)^k * binomial(n+k,n) * binomial(2*n-4*k,n).
Showing 1-3 of 3 results.