A063049 Integers n > 196 such that the 'Reverse and Add!' trajectory of n joins the trajectory of 196.
295, 394, 493, 592, 689, 691, 788, 790, 887, 986, 1495, 1585, 1675, 1765, 1855, 1945, 2494, 2584, 2674, 2764, 2854, 2944, 3493, 3583, 3673, 3763, 3853, 3943, 4079, 4169, 4259, 4349, 4439, 4492, 4529, 4582, 4619, 4672, 4709, 4762, 4799, 4852, 4889, 4942
Offset: 1
Examples
The trajectory of 394 reaches 887 in one step and 887 is a term in the trajectory of 196, so 394 belongs to the present sequence. The corresponding term in A063050, giving the number of steps, accordingly is 1.
References
- Popular Computing (Calabasas, CA), The 196 Problem, Vol. 3 (No. 30, Sep 1975), page PC30-9. Gives initial terms of this sequence.
Programs
-
Mathematica
Block[{nn = 10^2, s}, s = NestList[# + IntegerReverse@ # &, 196, nn]; Rest@ Select[Range@ 5000, Length@NestWhileList[# + IntegerReverse@ # &, #, FreeQ[s, #] &, 1, nn] <= nn &]] (* Michael De Vlieger, Jan 21 2018 *)
Extensions
Offset corrected by Sean A. Irvine, Apr 17 2023
Comments