cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063163 Composite numbers which in base 7 contain their largest proper factor as a substring.

Original entry on oeis.org

49, 77, 91, 119, 133, 161, 203, 217, 259, 287, 301, 329, 343, 371, 413, 427, 469, 497, 511, 539, 551, 553, 581, 623, 637, 679, 707, 721, 749, 763, 791, 833, 847, 889, 917, 931, 959, 973, 989, 1001, 1043, 1057, 1099, 1127, 1141, 1169, 1183, 1211, 1253
Offset: 1

Views

Author

Robert G. Wilson v, Aug 08 2001

Keywords

Comments

Sequence contains every term of A084968 except 7. - Bill McEachen, Dec 29 2020

Examples

			91 = 160_7 and its largest proper factor is 13 = 16_7 where 16 is a substring of 160. - _Bill McEachen_, Dec 30 2020
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ !PrimeQ[ n ] && StringPosition[ ToString[ FromDigits[ IntegerDigits[ n, 7 ] ] ], ToString[ FromDigits[ IntegerDigits[ Divisors[ n ] [ [ -2 ] ], 7 ] ] ] ] != {}, Print[ n ] ], {n, 2, 2000} ]
    Select[Range[1300],CompositeQ[#]&&SequenceCount[IntegerDigits[#,7],IntegerDigits[ Divisors[#][[-2]],7]]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 21 2021 *)
  • PARI
    isok(n)={mystr=digits(n,7);d=divisors(n);gpf=d[#d-1];seek=digits(gpf,7);ls=#seek;for(w=1,#mystr-ls+1,if(mystr[w]!=seek[1],next);for(h=1,ls-1,if(mystr[w+h]!=seek[h+1],break);if(h==ls-1,return(1))));return(0);} \\ Bill McEachen, Dec 31 2020