cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A063406 Number of cyclic subgroups of order 3 of general affine group AGL(n,2).

Original entry on oeis.org

0, 4, 112, 3136, 484096, 153545728, 72255188992, 169225143107584, 767806696376172544, 5846826552577416232960, 211692077904149369184059392, 14577670180222125357773973618688
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063386(n)-1)/2.

A063407 Number of cyclic subgroups of order 4 of general affine group AGL(n,2).

Original entry on oeis.org

0, 3, 210, 21840, 4248240, 2439718848, 4490186803200, 21306683553761280, 243362078944548372480, 8447714338361362064867328, 916006668995029638614026813440, 257020596641378222874290942398955520
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063387(n)-A063385(n))/2.

A063408 Number of cyclic subgroups of order 5 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 0, 5376, 2666496, 895942656, 260079353856, 5663488009568256, 731639373896934752256, 63867566904037836331155456, 4781235184059094238818788704256, 436966645827601226875601365191622656
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063388(n)-1)/4.

A063409 Number of cyclic subgroups of order 6 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 112, 33600, 17387776, 25992336384, 82647777759232, 833357980338831360, 28526490693606372081664, 3614600380702981731403431936, 1544913993707932218852890836467712
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063389(n)-A063386(n)-A063385(n)+1)/2.

A063410 Number of cyclic subgroups of order 7 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 64, 7680, 634880, 4555898880, 36661900345344, 199424098393128960, 5767554639734568386560, 2536966895379879201142210560, 884897682352177233989316141645824
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063390(n)-1)/6.

A063411 Number of cyclic subgroups of order 8 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 0, 5040, 6249600, 15958978560, 138492255928320, 3264016697241108480, 167083534977568918732800, 26809984170742141560784158720, 15381567503446460704398211326935040
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063391(n)-A063387(n))/4.

A063412 Number of cyclic subgroups of order 9 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 0, 0, 0, 3413114880, 27741797744640, 1358238417577574400, 158642247173060689920000, 19305274051251991346235310080, 12592116839628085308180342547415040
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063392(n)-A063386(n))/6.
Showing 1-7 of 7 results.