cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A063413 Number of cyclic subgroups of order 10 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 0, 0, 2666496, 8063483904, 23667221200896, 1546057323758223360, 374969260180817571741696, 163457085861840749434433961984, 112603564970401075916528447354044416, 152237556325944043707910988547266571141120, 824860715471760736216894023298196038268145893376
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063393(n)-A063388(n)-A063385(n)+1)/4.

Extensions

More terms from Sean A. Irvine, Apr 23 2023

A063407 Number of cyclic subgroups of order 4 of general affine group AGL(n,2).

Original entry on oeis.org

0, 3, 210, 21840, 4248240, 2439718848, 4490186803200, 21306683553761280, 243362078944548372480, 8447714338361362064867328, 916006668995029638614026813440, 257020596641378222874290942398955520
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063387(n)-A063385(n))/2.

A063408 Number of cyclic subgroups of order 5 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 0, 5376, 2666496, 895942656, 260079353856, 5663488009568256, 731639373896934752256, 63867566904037836331155456, 4781235184059094238818788704256, 436966645827601226875601365191622656
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063388(n)-1)/4.

A063409 Number of cyclic subgroups of order 6 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 112, 33600, 17387776, 25992336384, 82647777759232, 833357980338831360, 28526490693606372081664, 3614600380702981731403431936, 1544913993707932218852890836467712
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063389(n)-A063386(n)-A063385(n)+1)/2.

A063410 Number of cyclic subgroups of order 7 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 64, 7680, 634880, 4555898880, 36661900345344, 199424098393128960, 5767554639734568386560, 2536966895379879201142210560, 884897682352177233989316141645824
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063390(n)-1)/6.

A063411 Number of cyclic subgroups of order 8 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 0, 5040, 6249600, 15958978560, 138492255928320, 3264016697241108480, 167083534977568918732800, 26809984170742141560784158720, 15381567503446460704398211326935040
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063391(n)-A063387(n))/4.

A063412 Number of cyclic subgroups of order 9 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 0, 0, 0, 3413114880, 27741797744640, 1358238417577574400, 158642247173060689920000, 19305274051251991346235310080, 12592116839628085308180342547415040
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063392(n)-A063386(n))/6.
Showing 1-7 of 7 results.