A063454 Number of solutions to x^3 + y^3 = z^3 mod n.
1, 4, 9, 20, 25, 36, 55, 112, 189, 100, 121, 180, 109, 220, 225, 448, 289, 756, 487, 500, 495, 484, 529, 1008, 725, 436, 2187, 1100, 841, 900, 1081, 2048, 1089, 1156, 1375, 3780, 973, 1948, 981, 2800, 1681, 1980, 1513, 2420, 4725, 2116, 2209, 4032
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms n = 1..1000 from Seiichi Manyama)
Crossrefs
Programs
-
PARI
a(n)={my(p=Mod(sum(i=0, n-1, x^(i^3%n)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 18 2018
-
Python
def A063454(n): ndict = {} for i in range(n): m = pow(i,3,n) if m in ndict: ndict[m] += 1 else: ndict[m] = 1 count = 0 for i in ndict: ni = ndict[i] for j in ndict: k = (i+j) % n if k in ndict: count += ni*ndict[j]*ndict[k] return count # Chai Wah Wu, Jun 06 2017
Extensions
More terms from Dean Hickerson, Jul 26 2001
Comments