cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063454 Number of solutions to x^3 + y^3 = z^3 mod n.

Original entry on oeis.org

1, 4, 9, 20, 25, 36, 55, 112, 189, 100, 121, 180, 109, 220, 225, 448, 289, 756, 487, 500, 495, 484, 529, 1008, 725, 436, 2187, 1100, 841, 900, 1081, 2048, 1089, 1156, 1375, 3780, 973, 1948, 981, 2800, 1681, 1980, 1513, 2420, 4725, 2116, 2209, 4032
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 25 2001

Keywords

Comments

Equivalently, the number of solutions to x^3 + y^3 + z^3 == 0 (mod n). - Andrew Howroyd, Jul 18 2018

Crossrefs

Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), this sequence (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).

Programs

  • PARI
    a(n)={my(p=Mod(sum(i=0, n-1, x^(i^3%n)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 18 2018
    
  • Python
    def A063454(n):
        ndict = {}
        for i in range(n):
            m = pow(i,3,n)
            if m in ndict:
                ndict[m] += 1
            else:
                ndict[m] = 1
        count = 0
        for i in ndict:
            ni = ndict[i]
            for j in ndict:
                k = (i+j) % n
                if k in ndict:
                    count += ni*ndict[j]*ndict[k]
        return count # Chai Wah Wu, Jun 06 2017

Extensions

More terms from Dean Hickerson, Jul 26 2001