A063468 Number of Pythagorean triples in the range [1..n], i.e., the number of integer solutions to x^2 + y^2 = z^2 with 1 <= x,y,z <= n.
0, 0, 0, 0, 2, 2, 2, 2, 2, 4, 4, 4, 6, 6, 8, 8, 10, 10, 10, 12, 12, 12, 12, 12, 16, 18, 18, 18, 20, 22, 22, 22, 22, 24, 26, 26, 28, 28, 30, 32, 34, 34, 34, 34, 36, 36, 36, 36, 36, 40, 42, 44, 46, 46, 48, 48, 48, 50, 50, 52, 54, 54, 54, 54, 62, 62, 62, 64, 64, 66, 66, 66, 68, 70
Offset: 1
Keywords
Examples
For n = 5 the Pythagorean triples are (3, 4, 5) and (4, 3, 5), so a (5) = 2. For n = 10 the Pythagorean triples are (3, 4, 5), (4, 3, 5), (6, 8, 10) and (8, 6, 10), so a(10) = 4. For n = 17 the Pythagorean triples are (3, 4, 5), (4, 5, 3), (5, 12, 13), (12, 5, 13), (6, 8, 10), (8, 6, 10), (8, 15, 17), (15, 8, 17), (9, 12, 15) and (12, 9, 15), so a(17) = 10.
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[#[
: x in [1..n], y in [1..n]| IsSquare(x^2+y^2) and Floor(Sqrt(x^2+y^2)) le n]:n in [1..74]]; // Marius A. Burtea, Jan 22 2020 -
Mathematica
nq[n_] := SquaresR[2, n^2]/4 - 1; Accumulate@ Array[nq, 80] (* Giovanni Resta, Jan 23 2020 *)
Extensions
Corrected and extended by Vladeta Jovovic, Jul 28 2001