cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063535 Primes prime(n) such that prime(n+1)^2 < prime(n)*prime(n+2).

Original entry on oeis.org

2, 5, 11, 17, 19, 29, 41, 43, 59, 71, 79, 83, 101, 107, 109, 127, 137, 149, 163, 179, 191, 197, 227, 229, 239, 269, 281, 283, 311, 313, 331, 347, 349, 353, 379, 383, 397, 401, 419, 431, 439, 443, 461, 463, 487, 499, 503, 521, 541, 569, 571, 599, 617, 641, 643
Offset: 0

Views

Author

Michel ten Voorde, Aug 02 2001

Keywords

Comments

Conjecture: these are the primes such that prime(n+2) - 2*prime(n+1) + prime(n) > 0. If so, this sequence with A122535 and A147812 partition the primes. - Clark Kimberling, May 16 2015

Examples

			a(2) = 5 because 7*7 < 5*11.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all entries where prime(n+2) <= N
    Primes:= select(isprime,[2,seq(2*i+1,i=1..floor((N-1)/2))]):
    J:= select(j -> Primes[j+1]^2Robert Israel, Jun 23 2015
  • PARI
    j=[]; for(n=1,400, if(prime(n+1)^2<(prime(n)*prime(n+2)),j=concat(j, prime(n)))); j
    
  • PARI
    { n=-1; for (m=1, 10^9, if (prime(m + 1)^2 < prime(m)*prime(m + 2), write("b063535.txt", n++, " ", prime(m)); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 25 2009

Extensions

More terms from Jason Earls, Aug 03 2001