A063542
Least number of empty convex quadrilaterals (4-gons) determined by n points in the plane.
Original entry on oeis.org
0, 1, 3, 6, 10, 15, 23, 32, 42, 51
Offset: 4
- K. Dehnhardt. Leere konvexe Vielecke in ebenen Punktmengen. PhD thesis, TU Braunschweig, Germany, 1987.
- O. Aichholzer and H. Krasser, The point set order type data base: a collection of applications and results, pp. 17-20 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
- O. Aichholzer, R. Fabila-Monroy, T. Hackl, C. Huemer, A. Pilz, and B. Vogtenhuber. Lower bounds for the number of small convex k-holes. Computational Geometry: Theory and Applications, 47(5):605-613, 2014.
- O. Aichholzer, R. Fabila-Monroy, T. Hackl, C. Huemer, A. Pilz, B. Vogtenhuber, A set of 12 points minimizing the numbers of convex 3-, 4-, and 5-holes.
- O. Aichholzer, T. Hackl, and M. Scheucher, A set of 13 points minimizing the numbers of convex 3-, 4-, and 5-holes.
- M. Scheucher, Counting Convex 5-Holes, Bachelor's thesis, Graz University of Technology, Austria, 2013, in German.
Cf.
A063541 and
A276096 for empty convex 3- and 5-gons (a.k.a. k-holes), respectively. The rectilinear crossing number
A014540 is the number of (not necessarily empty) convex quadrilaterals.
A276096
a(n) is the least number of empty convex pentagons ("convex 5-holes") spanned by a set of n points in the Euclidean plane in general position (i.e., no three points on a line).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 6, 9, 11
Offset: 1
- K. Dehnhardt, Leere konvexe Vielecke in ebenen Punktmengen, PhD thesis, TU Braunschweig, Germany, 1987, in German.
- O. Aichholzer, M. Balko, T. Hackl, J. Kynčl, I. Parada, M. Scheucher, P. Valtr, and B. Vogtenhuber, A superlinear lower bound on the number of 5-holes, arXiv:1703.05253 [math.CO], 2017.
- O. Aichholzer, R. Fabila-Monroy, T. Hackl, C. Huemer, A. Pilz, and B. Vogtenhuber, Lower bounds for the number of small convex k-holes, Computational Geometry: Theory and Applications, 47(5):605-613, 2014.
- EuroGIGA - CRP ComPoSe, A set of 13 points with 3 convex 5-holes
- EuroGIGA - CRP ComPoSe, A set of 14 points with 6 convex 5-holes
- EuroGIGA - CRP ComPoSe, A set of 15 points with 9 convex 5-holes
- EuroGIGA - CRP ComPoSe, A set of 16 points with 11 convex 5-holes
- H. Harborth, Konvexe Fünfecke in ebenen Punktmengen, Elemente der Mathematik, 33:116-118, 1978, in German.
- M. Scheucher, Counting Convex 5-Holes, Bachelor's thesis, Graz University of Technology, Austria, 2013, in German.
- M. Scheucher, On 5-Holes.
Cf.
A006247 and
A063666 for equivalence classes (w.r.t. orientation triples) of point sets in the plane.
Showing 1-2 of 2 results.
Comments