A051602 a(n) is the maximal number of squares that can be formed from n points in the plane.
0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 7, 8, 11, 13, 15, 17, 20, 22
Offset: 0
Examples
Lower bounds: Computer searches, using glutton algorithms starting with all grid points in a convex polygon and adding successive points, have given the following current record configurations, which thus yield lower bounds for a(n). They are due mainly for n <= 36 to Sean A. Irvine and for 37 <= n <= 50 to Sascha Kurz. The representations below are given for ranges of n, and the integers indicate at what stage a given node is added (the letters A--Z encode the integers 10--36). For instance, the first representation encodes the sequence of configurations X XX ; XXX ; XXX ; XXX ; etc. XX ; XX ; XXX ; XXX ---------- n = 4--11 435 0016 0027 ---------- n = 12--19 ..7 4003 00005 00006 1002 ---------- n = 20--36 .GA78B .93100C E500000 F400000 .600000 .D2000 ---------- n = 37--47 .60007 5000008 0000000 00000009 0000000A 4000003 .20001 ---------- n = 48--50 ..0000 .000000 20000000 00000000 00000000 .0000000 .000000 ...001 ---------- In particular, a(25)>=51, a(36)>=109, a(37)>=117, a(48)>=198, a(49)>=207, a(50)>=216. ---------- Another optimal configuration for a(8) = 4 due to Sascha Kurz: .XX XXXX .XX ---------- Configurations and values for larger values of n can be found in the links below.
References
- Elekes, Erdos, Similar configurations and pseudo grids, Coll. Math. Soc. Janos Bolyai 63 Intuitive Geometry, Budapest (Hungary), 1994.
- J. Matousek, Lectures on Discrete Geometry, GTM 212, Springer, 2002.
Links
- Bernardo M. Abrego, Silvia Fernandez-Merchant, and David B. Roberts, On the maximum number of isosceles right triangles in a finite point set, arXiv:1102.5347 [math.CO], 2011. Also in Involve, 4:1 (2011), 27-42.
- Bernardo M. Abrego, Silvia Fernandez-Merchant, Daniel J. Katz and Levon Kolesnikov, On The Number of Similar Instances of a Pattern in a Finite Set, arXiv:1501.00076 [math.CO], 2015.
- Sean A. Irvine, Java program for a(n) (github) [The program is not guaranteed to be correct because it searches only grid points in [1, ceil(sqrt(n))]^2.]
- Sean A. Irvine, Illustrations for n = 4 through 16, 2021.
- Sascha Kurz, Plane point sets with many squares or isosceles right triangles, arXiv:2112.12716 [math.CO], 2021.
- Sascha Kurz, Peter Munn, and Hugo van der Sanden, Plane point sets with many squares, Preprint, Jan 13 2022
- Peter Munn, Asymptotics for circular regions, SeqFan post, Oct 04 2021.
- N. J. A. Sloane, Sascha Kurz's table of the best results presently known for 4 <= n <= 100, taken from the Nov 03 2021 version of Sascha Kurz et al., Plane point sets with many squares.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 21.
- Hugo van der Sanden and Benoit Jubin, At most three squares can be formed from seven points in the plane
Crossrefs
Formula
If n = m^2, then a(n) >= m^2*(m^2-1)/12 (see A002415). If n = m^2-1, then a(n) >= (m-1)*(m-2)*(m^2+3*m+6)/12. - N. J. A. Sloane, Sep 28 2021
Extensions
a(13)-a(16) from Sean A. Irvine, Sep 23 2021
a(13)-a(16) confirmed and a(17) from Sascha Kurz, Oct 30 2021
Revised following a rich discussion on the seqfan mailing list, with contributions by the persons cited in the text, Allan Wechsler, Alex Meiburg, and Benoit Jubin. - Benoit Jubin, Oct 07 2021
Partially revised by N. J. A. Sloane, Nov 02 2021
Comments