cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A348768 Number of inequivalent solutions to the problem of the maximal number of squares that can be formed from n points in the plane (see A051602).

Original entry on oeis.org

2, 2, 2, 1, 1, 5, 1, 1, 2, 2, 2
Offset: 6

Views

Author

N. J. A. Sloane, Nov 01 2021

Keywords

Comments

For n = 0 through 5 the numbers are 1, 1, oo, oo, 1, oo.

Examples

			For n = 6 there are two ways to achieve A051602(6) = 2:
  XXX
  XXX
and
  .X.
  XXX
  XX.
		

References

  • Sascha Kurz et al., Plane point sets with many squares, draft version, Oct 31 2021.

Crossrefs

Cf. A051602.

A002415 4-dimensional pyramidal numbers: a(n) = n^2*(n^2-1)/12.

Original entry on oeis.org

0, 0, 1, 6, 20, 50, 105, 196, 336, 540, 825, 1210, 1716, 2366, 3185, 4200, 5440, 6936, 8721, 10830, 13300, 16170, 19481, 23276, 27600, 32500, 38025, 44226, 51156, 58870, 67425, 76880, 87296, 98736, 111265, 124950, 139860, 156066, 173641, 192660, 213200, 235340
Offset: 0

Views

Author

Keywords

Comments

Also number of ways to legally insert two pairs of parentheses into a string of m := n-1 letters. (There are initially 2C(m+4,4) (A034827) ways to insert the parentheses, but we must subtract 2(m+1) for illegal clumps of 4 parentheses, 2m(m+1) for clumps of 3 parentheses, C(m+1,2) for 2 clumps of 2 parentheses and (m-1)C(m+1,2) for 1 clump of 2 parentheses, giving m(m+1)^2(m+2)/12 = n^2*(n^2-1)/12.) See also A000217.
E.g., for n=2 there are 6 ways: ((a))b, ((a)b), ((ab)), (a)(b), (a(b)), a((b)).
Let M_n denote the n X n matrix M_n(i,j)=(i+j); then the characteristic polynomial of M_n is x^(n-2) * (x^2-A002378(n)*x - a(n)). - Benoit Cloitre, Nov 09 2002
Let M_n denote the n X n matrix M_n(i,j)=(i-j); then the characteristic polynomial of M_n is x^n + a(n)x^(n-2). - Michael Somos, Nov 14 2002 [See A114327 for the infinite matrix M in triangular form. - Wolfdieter Lang, Feb 05 2018]
Number of permutations of [n] which avoid the pattern 132 and have exactly 2 descents. - Mike Zabrocki, Aug 26 2004
Number of tilings of a <2,n,2> hexagon.
a(n) is the number of squares of side length at least 1 having vertices at the points of an n X n unit grid of points (the vertices of an n-1 X n-1 chessboard). [For a proof, see Comments in A051602. - N. J. A. Sloane, Sep 29 2021] For example, on the 3 X 3 grid (the vertices of a 2 X 2 chessboard) there are four 1 X 1 squares, one (skew) sqrt(2) X sqrt(2) square, and one 3 X 3 square, so a(3)=6. On the 4 X 4 grid (the vertices of a 3 X 3 chessboard) there are 9 1 X 1 squares, 4 2 X 2 squares, 1 3 X 3 square, 4 sqrt(2) X sqrt(2) squares, and 2 sqrt(5) X sqrt(5) squares, so a(4) = 20. See also A024206, A108279. [Comment revised by N. J. A. Sloane, Feb 11 2015]
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Number of distinct components of the Riemann curvature tensor. - Gene Ward Smith, Apr 24 2006
a(n) is the number of 4 X 4 matrices (symmetrical about each diagonal) M = [a,b,c,d;b,e,f,c;c,f,e,b;d,c,b,a] with a+b+c+d=b+e+f+c=n+2; (a,b,c,d,e,f natural numbers). - Philippe Deléham, Apr 11 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
a(n) is the number of Dyck (n+1)-paths with exactly n-1 peaks. - David Callan, Sep 20 2007
Starting (1,6,20,50,...) = third partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} C(n+3,i+3)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
4-dimensional square numbers. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Equals row sums of triangle A177877; a(n), n > 1 = (n-1) terms in (1,2,3,...) dot (...,3,2,1) with additive carryovers. Example: a(4) = 20 = (1,2,3) dot (3,2,1) with carryovers = (1*3) + (2*2 + 3) + (3*1 + 7) = (3 + 7 + 10).
Convolution of the triangular numbers A000217 with the odd numbers A004273.
a(n+2) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and w-x=max{w,x,y,z}-min{w,x,y,z}. - Clark Kimberling, May 28 2012
The second level of finite differences is a(n+2) - 2*a(n+1) + a(n) = (n+1)^2, the squares. - J. M. Bergot, May 29 2012
Because the differences of this sequence give A000330, this is also the number of squares in an n+1 X n+1 grid whose sides are not parallel to the axes.
a(n+2) gives the number of 2*2 arrays that can be populated with 0..n such that rows and columns are nondecreasing. - Jon Perry, Mar 30 2013
For n consecutive numbers 1,2,3,...,n, the sum of all ways of adding the k-tuples of consecutive numbers for n=a(n+1). As an example, let n=4: (1)+(2)+(3)+(4)=10; (1+2)+(2+3)+(3+4)=15; (1+2+3)+(2+3+4)=15; (1+2+3+4)=10 and the sum of these is 50=a(4+1)=a(5). - J. M. Bergot, Apr 19 2013
If P(n,k) = n*(n+1)*(k*n-k+3)/6 is the n-th (k+2)-gonal pyramidal number, then a(n) = P(n,k)*P(n-1,k-1) - P(n-1,k)*P(n,k-1). - Bruno Berselli, Feb 18 2014
For n > 1, a(n) = 1/6 of the area of the trapezoid created by the points (n,n+1), (n+1,n), (1,n^2+n), (n^2+n,1). - J. M. Bergot, May 14 2014
For n > 3, a(n) is twice the area of a triangle with vertices at points (C(n,4),C(n+1,4)), (C(n+1,4),C(n+2,4)), and (C(n+2,4),C(n+3,4)). - J. M. Bergot, Jun 03 2014
a(n) is the dimension of the space of metric curvature tensors (those having the symmetries of the Riemann curvature tensor of a metric) on an n-dimensional real vector space. - Daniel J. F. Fox, Dec 15 2018
Coefficients in the terminating series identity 1 - 6*n/(n + 5) + 20*n*(n - 1)/((n + 5)*(n + 6)) - 50*n*(n - 1)*(n - 2)/((n + 5)*(n + 6)*(n + 7)) + ... = 0 for n = 1,2,3,.... Cf. A000330 and A005585. - Peter Bala, Feb 18 2019

Examples

			a(7) = 6*21 - (6*0 + 4*1 + 2*3 + 0*6 - 2*10 - 4*15) = 196. - _Bruno Berselli_, Jun 22 2013
G.f. = x^2 + 6*x^3 + 20*x^4 + 50*x^5 + 105*x^6 + 196*x^7 + 336*x^8 + ...
		

References

  • O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
  • R. Euler and J. Sadek, "The Number of Squares on a Geoboard", Journal of Recreational Mathematics, 251-5 30(4) 1999-2000 Baywood Pub. NY
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = ((-1)^n)*A053120(2*n, 4)/8 (one-eighth of fifth unsigned column of Chebyshev T-triangle, zeros omitted). Cf. A001296.
Second row of array A103905.
Third column of Narayana numbers A001263.
Partial sums of A000330.
The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers (A000027) with the k-gonal numbers.

Programs

  • GAP
    List([0..45],n->Binomial(n^2,2)/6); # Muniru A Asiru, Dec 15 2018
  • Magma
    [n^2*(n^2-1)/12: n in [0..50]]; // Wesley Ivan Hurt, May 14 2014
    
  • Maple
    A002415 := proc(n) binomial(n^2,2)/6 ; end proc: # Zerinvary Lajos, Jan 07 2008
  • Mathematica
    Table[(n^4 - n^2)/12, {n, 0, 40}] (* Zerinvary Lajos, Mar 21 2007 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,0,1,6,20},40] (* Harvey P. Dale, Nov 29 2011 *)
  • PARI
    a(n) = n^2 * (n^2 - 1) / 12;
    
  • PARI
    x='x+O('x^200); concat([0, 0], Vec(x^2*(1+x)/(1-x)^5)) \\ Altug Alkan, Mar 23 2016
    

Formula

G.f.: x^2*(1+x)/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{i=0..n} (n-i)*i^2 = a(n-1) + A000330(n-1) = A000217(n)*A000292(n-2)/n = A000217(n)*A000217(n-1)/3 = A006011(n-1)/3, convolution of the natural numbers with the squares. - Henry Bottomley, Oct 19 2000
a(n)+1 = A079034(n). - Mario Catalani (mario.catalani(AT)unito.it), Feb 12 2003
a(n) = 2*C(n+2, 4) - C(n+1, 3). - Paul Barry, Mar 04 2003
a(n) = C(n+2, 4) + C(n+1, 4). - Paul Barry, Mar 13 2003
a(n) = Sum_{k=1..n} A000330(n-1). - Benoit Cloitre, Jun 15 2003
a(n) = n*C(n+1,3)/2 = C(n+1,3)*C(n+1,2)/(n+1). - Mitch Harris, Jul 06 2006
a(n) = A006011(n)/3 = A008911(n)/2 = A047928(n-1)/12 = A083374(n)/6. - Zerinvary Lajos, May 09 2007
a(n) = (1/2)*Sum_{1 <= x_1, x_2 <= n} (det V(x_1,x_2))^2 = (1/2)*Sum_{1 <= i,j <= n} (i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
a(n) = C(n+1,3) + 2*C(n+1,4). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = (1/48)*sinh(2*arccosh(n))^2. - Artur Jasinski, Feb 10 2010
a(n) = n*A000292(n-1)/2. - Tom Copeland, Sep 13 2011
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Harvey P. Dale, Nov 29 2011
a(n) = (n-1)*A000217(n-1) - Sum_{i=0..n-2} (n-1-2*i)*A000217(i) for n > 1. - Bruno Berselli, Jun 22 2013
a(n) = C(n,2)*C(n+1,3) - C(n,3)*C(n+1,2). - J. M. Bergot, Sep 17 2013
a(n) = Sum_{k=1..n} ( (2k-n)* k(k+1)/2 ). - Wesley Ivan Hurt, Sep 26 2013
a(n) = floor(n^2/3) + 3*Sum_{k=1..n} k^2*floor((n-k+1)/3). - Mircea Merca, Feb 06 2014
Euler transform of length 2 sequence [6, -1]. - Michael Somos, May 28 2014
G.f. x^2*2F1(3,4;2;x). - R. J. Mathar, Aug 09 2015
Sum_{n>=2} 1/a(n) = 21 - 2*Pi^2 = 1.260791197821282762331... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A080852(2,n-2). - R. J. Mathar, Jul 28 2016
a(n) = A046092(n) * A046092(n-1)/48 = A000217(n) * A000217(n-1)/3. - Bruce J. Nicholson, Jun 06 2017
E.g.f.: (1/12)*exp(x)*x^2*(6 + 6*x + x^2). - Stefano Spezia, Dec 07 2018
Sum_{n>=2} (-1)^n/a(n) = Pi^2 - 9 (See A002388). - Amiram Eldar, Jun 28 2020

Extensions

Typo in link fixed by Matthew Vandermast, Nov 22 2010
Redundant comment deleted and more detail on relationship with A000330 added by Joshua Zucker, Jan 01 2013

A186705 The Erdős unit distance problem: the maximum number of occurrences of the same distance among n points in the plane.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 12, 14, 18, 20, 23, 27, 30, 33, 37, 41, 43, 46, 50, 54, 57
Offset: 1

Views

Author

Michael Somos, Feb 25 2011

Keywords

Comments

An upper bound is floor(k*n^(4/3)), A129011, if k is close enough to 1. Also a(27)=81 (Hamming 3,3 graph). - Ed Pegg Jr, Feb 02 2018

Examples

			a(4) = 5 because there is a unit distance graph with 4 vertices of an equilateral rhombus such that all but one of the six pairs of vertices are unit distance apart.
Comment from _Allan C. Wechsler_, Sep 17 2018: (Start)
Construction for a(9)=18: Take a convex, equilateral hexagon ABCDEF. Make the angles vary a bit, though, to avoid the hexagon being regular. Now, on each of the six sides, construct an equilateral triangle pointing into the hexagon. In general, the triangles will overlap here and there; this is OK because we aren't going to care about edges crossing each other. So we have triangles ABU, BCV, CDW, DEX, EFY, and FAZ: a total of twelve points with 18 unit distances among them.
Now adjust the hexagon to make some pairs of the internal points coincide. We want to make U=X, V=Y, and W=Z. The resulting linkage still has one degree of freedom, so we can arrange it so that none of the edges coincide (they can and must cross, though). The adjusted hexagon will only have two different angles: ABC = CDE = EFA, and BCD = DEF = FAB. The whole thing will have triangular (D_6) symmetry. It will have nine vertices (after merging three pairs from the original 12) but it will still have 18 unit edges. (End)
		

References

  • P. Brass, W. O. J. Moser, J. Pach, Research Problems in Discrete Geometry, Springer (2005), p. 183

Crossrefs

Cf. A385657 (number of nonisomorphic maximally dense unit-distance graphs).

Extensions

Extended to a(21) using values from Version 2 of the Alexeev et al. arXiv manuscript. - N. J. A. Sloane, Jun 24 2025

A186926 Maximal number of isosceles right triangles in a set of n points in the plane.

Original entry on oeis.org

1, 4, 8, 11, 15, 20, 28, 35, 43, 52, 64, 74, 85, 97, 112, 124, 139, 156, 176, 192, 210, 229, 252, 271, 291, 314, 338, 363, 389, 417, 448, 473, 501, 531, 564, 594, 626, 659, 696, 728, 763, 799, 836, 874, 914, 955, 1000, 1038
Offset: 3

Views

Author

Jonathan Vos Post, Mar 01 2011

Keywords

Comments

The values for n >= 15 are only conjectural.

Crossrefs

Extensions

Edited by N. J. A. Sloane, Mar 04 2011
More terms from Sascha Kurz, Jan 14 2022

A348469 Maximal number of squares that can be formed from the grid points in a qualifying circular region of the plane that contains exactly n points of a square grid.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 7, 8, 11, 13, 15, 17, 20, 22, 25, 28, 32, 37, 40, 43, 47, 51, 56, 60, 65, 70, 75, 81, 88, 92, 97, 103, 109, 117, 123, 130, 137, 144, 151, 158, 166, 175, 182, 189, 198, 207, 216, 226, 237, 245, 254, 263, 272, 282, 293, 303, 314
Offset: 0

Views

Author

Sascha Kurz and Peter Munn, Oct 19 2021

Keywords

Comments

A circular region qualifies if (1) 3 (or more) grid points are incident on its circumference, or (2) it is an adjustment of a circular region, D, as defined in (1), so as to exclude only one or only consecutive grid points on the circumference of D. (Any such points on the circumference of D can be excluded by perturbing the center and radius of D by compatible but arbitrarily small amounts.)
The sequence definition is designed to help investigate the extent to which terms of A051602 can be equalled using only circular regions, while facilitating quicker calculation of terms. At the time of first submission, it is not clear to the authors that the qualification on the circular regions excludes any otherwise permissible configuration of points. In the absence of this knowledge, the qualification allows for the desired quicker calculation.
See A051602 for more information, references and links related to the general problem.

Examples

			For the following examples, we refer to _Hugo Pfoertner_'s pictorial catalog of circles passing through 3 or more grid points (see links section). Each illustration in the catalog is headed by the relevant terms of the sequences that give the squared radii of the circles, e.g. "A192493(5) = 25, A192494(5) = 16". The last line underneath each illustration gives the number of grid points in the circular region, e.g. "4+3=7" indicates 7 grid points total, of which 3 are on the circumference.
For n = 10, in the Pfoertner catalog we see the only circular region with 10 points corresponds to A192493(8). From the points in the illustration for A192493(8), 7 squares can be formed. This matches A051602(10) = 7, the maximal number of squares that can be formed from 10 points, so a(10) = 7.
For n = 20, in the Pfoertner catalog the only circular region with 20 points corresponds to A192493(29). From the points in the illustration for A192493(29), 31 squares can be formed. The circular region corresponding to A192493(24) has 21 points. From the points in the illustration for A192493(24) with any circumferential point excluded to leave 20 points, 32 squares can be formed. From a comprehensive search not detailed here, we ascertain that 32 is the most squares that can be formed from a 20 point configuration defined in the specified manner, so a(20) = 32.
		

Crossrefs

Formula

a(n) <= A051602(n).

A362706 Number of squares formed by first n vertices of the infinite-dimensional hypercube.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 6, 6, 7, 9, 13, 16, 21, 27, 36, 36, 37, 40, 45, 50, 57, 66, 78, 85, 94, 106, 121, 136, 154, 175, 200, 200, 201, 205, 211, 219, 229, 242, 258, 271, 286, 305, 327, 351, 378, 409, 444, 463, 484, 510, 539, 571, 606, 646, 690, 729, 771, 819
Offset: 1

Views

Author

Hugo van der Sanden, Jun 22 2023

Keywords

Comments

We can take the coordinates of a vertex to represent a binary number, so we define the n-th point to have coordinates represented by the binary expansion of n-1.
Let d(m) = a(m+1) - a(m) be the shifted first differences of a(n), so that d(m) represents the additional squares introduced by the (m+1)-th vertex. Then d(0) = d(2^x) = 0; when m = 2^x + 2^y, x > y, d(m) = A115990(x - 1, x - y - 1); generally, d(m) = sum d(k) for all k formed by selecting two 1's from the binary expansion of m. Thus d(7) = d(3) + d(5) + d(6).
a(n) is a lower bound for an infinite-dimensional extension of A051602. Peter Munn notes that it is not an upper bound: for example, the vertices of a regular {k-1}-simplex duplicated at unit distance in any orthogonal direction gives T_k squares from 2k+2 points, which exceeds a(n) at 6, 10 and 12 points.

Examples

			The 6 points (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1) give the squares (0,0,0), (1,0,0), (0,1,0), (1,1,0) and (0,0,0), (1,0,0), (0,0,1), (1,0,1). So a(6) = 2.
		

Crossrefs

Formula

a(2^k) = A345340(k).
Showing 1-6 of 6 results.