A063544 Smallest number of triangulations of n points in the plane.
1, 1, 2, 4, 11, 30, 89, 250, 776, 2236, 7147, 20979, 68448
Offset: 3
References
- P. Brass, W. O. J. Moser, J. Pach, Research Problems in Discrete Geometry, Springer (2005).
Links
- O. Aichholzer, V. Alvarez, T. Hackl, A. Pilz, B. Speckmann and B. Vogtenhuber, An Improved Lower Bound on the Minimum Number of Triangulations, in Proceedings of the 32nd International Symposium on Computational Geometry (SoCG 2016), pages 7:1--7:16, LIPIcs, 2016.
- O. Aichholzer, F. Hurtado, and M. Noy, On the Number of Triangulations Every Planar Point Set Must Have, Proceedings of the 13th Annual Canadian Conference on Computational Geometry CCCG 2001, pages 13-16, Waterloo, Ontario, Canada, 2001. See also the Counting Triangulations - Olympics
- O. Aichholzer and H. Krasser, The point set order type data base: a collection of applications and results, pp. 17-20 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
- F. Santos and R. Seidel, A better upper bound on the number of triangulations of a planar point set, Journal of Combinatorial Theory, Series A, 102(1):186-193, 2003.
- EuroGIGA - CRP ComPoSe, Double Circle
Formula
Conjecture: a(n) = sqrt(12)^(n-Theta(log n)). - Manfred Scheucher, Aug 22 2016
Extensions
a(11)-a(15) from Manfred Scheucher, Aug 22 2016
Comments